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 The main challenge in disease treatment is no more the discovery of new therapeutic 

drugs, but to provide targeted delivery of therapeutic drugs to specific sites without incurring 

systemic toxicity effects.  An efficient way of reducing the toxicity is by encapsulating the drug 

with a biodegradable matrix that can provide controlled release of the drug along with local 

heating of the drug. Local heating can be obtained by incorporating magnetic iron oxide particles 

that heat upon exposure to AC electromagnetic fields.  The magnetic iron oxide nanoparticles are 

also gaining much attention as MRI contrast agents.  Thus it would be of potential benefit if a 

drug delivery system is designed to encapsulate the drug as well as the magnetic iron oxide 

nanoparticles within a biodegradable matrix, thereby providing a dual modal imaging and 

therapeutic delivery system.  The key step in the design of a dual modal drug delivery system is 
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the encapsulation of the magnetic iron oxide nanoparticles with polymer of choice. The magnetic 

iron oxide nanoparticles were encapsulated into a robust poly (styrene-co-vinylbenzylchloride-

co-divinylbenzene) (PSVBDVB) to study these synthetic variations upon encapsulation with a 

polymer.  The next step to the design of drug delivery system was to replace the PSVBDVB 

polymer by a biocompatible and biodegradable polymer- Poly (lactide-co-glycolide) (PLGA). 

The PLGA composites containing the Fe@FeOx core shell nanoparticles and the drug analog 

[Ru(bpy) dye] was prepared by oil-in water emulsion solvent evaporation technique.  The local 

heating of the PLGA composites was also achieved by irradiating the Fe@FeOx nanoparticles 

with 2.45 GHz microwave radiations.  Higher Ru(bpy) dye release from the composites by 

locally heating the sample with 2.45 GHz microwave pulse compared to externally heating the 

composite sample was achieved. 

 The final step was the design of controlled release drug delivery system with dual modal 

imaging and therapeutic capabilities.  To obtain narrow sized PLGA composites the Fe@FeOx 

nanoparticles were replaced by chloroform based ferrofluid.  The ferrofluid was synthesized by 

novel thermolysis technique.  The release of the dye from the PLGA composites when placed in 

the Rf induction coil was determined by fluorescence spectroscopy and a linear increase in the 

fluorescent intensity was observed with time.  Also, the controlled release of the dye from the 

composites was achieved by a pulsed Rf treatment.  Magnetic resonance imaging was also 

performed using the PLGA composites which showed enhancement in the T2-weighted image 

contrast and thus negligible reduction in the contrast capabilities of the iron oxide particles (R2 = 

58.7 s
-1

mM
-1

).  The PLGA composites containing the drug analog and the iron oxide 

nanoparticles thus constitute a controlled release drug delivery system with dual modal imaging 

and therapeutic capabilities. 
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1.1.Overview 

 Advances in the drug development and delivery have evolved in several phases, 

beginning with the botanical phase of human civilization, via the synthetic chemistry era, and 

now presently in the biotechnology era.  Researchers are continuously developing new and 

more powerful drugs, but still the drugs are administered conventionally.  The conventional 

route of administration of these drugs are primarily enteral or perenteral routes.  Enteral route 

of drug administration rely on introducing a drug to the digestive tract through the mouth or 

rectum.  Perenteral route of drug administration involves the injection or infusion of a drug into 

the body  (intravenous or intramuscular).
1,2

 Many vaccines as well as the chemotherapeutic 

drugs are delivered through the perenteral route of administration.
1
  Oral delivery is most 

attractive due to high patient convenience and compliance.  In both type of administration the 

resultant effect is systemic i.e. upon administration the drug molecules are distributed 

throughout the body. 
3,4

  Several different types of cell are involved into the diseased tissues: 

the diseased cells, normal cells from which the disease evolves, vascular cells, fibroblasts, and 

immune cells.  The systemically distributed drug metabolizes throughout the body leading to 

the damage of healthy cells and tissues, resulting in general toxicity and poor acceptance of the 

treatments by patients.
4
  For example, the treatment of cancer, HIV infections, tuberculosis, 

and malaria generally involve very powerful drugs, and their use is considerably reduced due 

to the occurrences of side effects. In addition, conventionally delivered drugs get diluted in the 

blood and body fluids resulting in insufficient drug concentration at the diseased site.
5
  Drugs 

are often too quickly cleared from the blood stream due to the uptake by the reticuloendothelial 

system (RES) i.e. the body’s immune system, and the kidneys.
5
  This leads to a treatment 

approach of higher doses, or the inconvenience of continuous infusion again resulting in 
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perhaps intolerable or even more toxic levels of drugs.
4
  This side effects result in a dose 

limiting situation where the drug administration has to be brought to a level that is just 

tolerable to the patients, but may be less effective.  Also the drugs may be unstable and 

degrades quickly or may have a very poor solubility in aqueous solution. For instance 

hydrophobic drugs get precipitated in blood plasma, and require solubilizers/stabilizers in order 

to administer the drugs.
6
  Unfortunately, these solubilizers/stabilizers not only dilutes the 

potency of the drugs but also adds up to the drug toxicity.
7
  Therefore, for effective treatment 

it is necessary to maintain the drug concentration between the effective therapeutic level 

and the maximum tolerable limit for prolonged period of time as shown in figure.
8,9

  The 

drug release from conventional route is in a form of a burst where in the drug is released all at 

a time and needs to be given on a regular basis.  A controlled release drug delivery system is 

desirable that can release the drug effectively in the therapeutic window over a long period of 

time. This will allow for fewer drug dosage and patient compliance.  This all can be achieved 

by designing a controlled release drug delivery system specific for the diseased cells within the 

body.  The challenges presented here can be overcome by properly integrating nanotechnology 

with the established knowledge of the disease characteristics. 
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Figure 1-1: Therapeutic window showing the effect of conventional burst release and 

controlled release relative to the effective concentration and the maximum tolerable toxic 

concentration. 
 

1.2. Nanotechnology 

Nanotechnology is an emerging field of science that can facilitate a way to overcome the 

short coming to an efficient and safe drug delivery system.
10,11

  Nanotechnology is an 

interdisciplinary field of science which deals with the design, synthesis, characterization and 

application of devices and materials in the nanoscale range.
4
  Although nanomaterials are 

widely considered to be an invention of modern science, they actually have a very long history. 
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Nanoparticles (NPs) were empirically used by artisans as far back as the 9th century BC in 

Mesopotamia to generate a glittering effect on the surfaces of pots.  Modern nanotechnology 

was envisioned by the physicist and Nobel laureate Richard Feynman in his lecture “There is 

plenty of room at the bottom” in 1959.  Nanotechnology refers to structures roughly in the 1 to 

500 nm size in at least one dimension and are developed by top-down or bottom-up 

approaches.
12

   To put this size range in perspective, an atom, molecules, proteins, virus, cell 

mitochondrium, red blood cells, and the mammalian cells are around 0.1 nm, 1 nm, 10 nm, 100 

nm, 1000 nm, 10,000 nm and 100,000 nm respectively as shown in Figure 1-2.  The application 

of nanotechnology to life sciences has been termed as nanobiotechnology.
13-15

 

 

Figure 1-2:  Representation of size of species in the nano and micron region 

These nanoscale materials possess unique and unusual properties and are currently used 

in multidisciplinary scientific areas that range from physics and engineering to biochemistry.   

Among many unique physical and chemical properties at the nanoscale, one basic physical 

property for nanomaterials is the large surface area to volume ratio.
16

  For example, in bulk 

materials only a relatively small percentage of atoms can be at or near the surface. When the 
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dimensions continue to shrink to the nanoscale, the percentage of bulk atoms decreases while the 

surface atoms increase.  This provides relatively large (functional) surface area which is able to 

bind, absorb and carry other compounds such as drugs and probes.
17

  Also the physiochemical 

properties of nanomaterials like friction and interaction with other molecules are different from 

their bulk counterparts.  Depending on the type of application nanomaterials can be synthesized 

from different materials like iron, gold, silica, semiconductors, lipids or polymers.  Also the 

nanomaterials can be fabricated into different shapes such as nanospheres, nanorods, nanotubes, 

nanowires.  The nanomaterials due to their small size can cross biological barriers including the 

blood-brain barrier, transit out of blood vessel walls or the cells by difference uptake 

mechanisms thereby interacting with wide range of biological entities.  These characteristics 

confer nanomaterials high interaction and transport capabilities making them attractive for the 

design of biosensors, imaging and/or therapeutic agents.  Advances in nanobiotechnology have 

heralded the advent of several innovative nanomaterials, which are set to revolutionize the field 

of targeted drug delivery system. 

1.3. Drug delivery system (DDS) 

A drug delivery system (DDS) is defined as a system in which the bioactive agent (drug) 

is integrated with a non-active agent (carrier) in such a way that the drug is released from the 

carrier in a predetermined manner, at a constant rate in what is known as zero-order release, in a 

cyclic manner, or in response to an external trigger such as a change in pH, ionic strength or 

temperature of the medium.
18-21

   Ideally the carrier system, whether it is synthetic or natural, 

should be able to provide a nontoxic support system that can be manufactured on an industrial 

scale that can be translated into a cost-effective, clinically practical medicine.
22

  In addition to 

controlling the rate and duration of the drug release, the DDS should be able to target the drugs 
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to specific organs and tissues, as well as individual organelles within the individual cells (i.e. 

tumors, bacterial cells of definite species) or respond to a biofeedback mechanism such as 

glucose levels in hyperglycemia patients.  The schematic of an ideal drug delivery system is 

depicted in Figure 1-3. 

   

Figure 1-3: Schematic representation of an ideal drug delivery system (DDS) 

 The benefits offered by controlled DDS over traditional pharmaceutical administration 

include maintenance of the drug levels within desired limits, maximize the pharmaceutical drug 
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activity, the need for fewer doses, and better patient compliance.
23

  In addition, association of the 

drug with a carrier may provide enhanced protection to the active agent from degradation in the 

physiological environment, and improve the stability of the drug that is required for formulation 

and administration.  The field of DDS is characterized by the need of delivering the existing 

drugs to specific targets in the diseased cells through specific cell reorganization 

mechanism and be able to overcome the biological barriers that prevent the drug from 

effectively reaching the target.  
19,24-27

  The application of nanobiotechnology to drug delivery 

has benefited all streams of medical science with oncology being the foremost 

1.4. Cancer  

 Cancer is a class of disease in which the cells in a part of the body begin to grow out of 

control.
28

  Cell multiplication (proliferation) is a normal physiologic process that occurs in 

almost all tissues and under many circumstances, such as response to injury, immune responses, 

or to replace cells those have died or have been shed as a part of their lifecycle.  Normally the 

balance between proliferation and cell death is tightly regulated to ensure the integrity of organs 

and tissues.  But sometimes mutations in the DNA disturb the orderly process and leads to the 

uncontrolled and often rapid proliferation of cells.  This leads to either a benign tumor or a 

malignant tumor (cancer).  Benign tumors do not spread to other parts of the body or invade 

other tissues, and they are rarely a threat to life. Malignant tumors can invade other organs, 

spread to distant locations (metastasize) and become life threatening.  Cancer is the second 

leading cause of death in United States exceeded only by heart disease, with an estimate of 1.6 

million new cases and 571,950 deaths in 2011.
29

  Symptoms and signs of cancer depend on the 

type and location of the cancer, but more often the symptoms do not start until the disease has 

reached an advanced stage.  Most cancers are diagnosed by biopsy, and depending on the 
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location of the tumor the biopsy may be simple procedure or a serious operation.   So an efficient 

cancer detection technique needs to develop which can diagnose the disease at an early treatable 

stage.  The principal treatment approach followed these days is surgery; if the tumor is accessible 

and/or chemotherapy and radiation therapy that can eradicate the tumors located deep inside the 

body.
28

  Both chemotherapy and radiation therapy suffers from their non-specific mode of 

actions leading to adverse side effects.
30-33

  For example, the most common chemotherapeutic 

agents such as paclitaxel and doxorubicin exhibit anti-cancer effects by inducing apoptotic death 

of rapidly dividing cells, but they can also kill several types of normal cells that divide rapidly in 

ordinary circumstances.
34-37

  Since the current chemotherapy is mainly based on a whole-body 

treatment with the chemotherapeutic agents, it is inevitable to cause many dangerous side effects 

associated with the non-selective cytotoxic effect of the medications.  Thus, drug delivery in 

cancer is important for optimizing the effect of drugs and reducing the toxic side effects.  

Significant advances have been made in the treatment of many cancer subtypes, but the therapies 

currently available, lack the patient compliance.
38

  The National Cancer Institute (NCI) launched 

the alliance for nanotechnology in cancer for improving cancer mortality defined the path of 

opportunities in the following areas:
39

 

1. Research tools that makes it possible to rapid identification of new biological targets for 

clinical developments. 

2. Agents that can monitor predictive molecular changes to identify precancerous cells and 

prevent them from becoming malignant. 

3. Imaging agents and diagnostics that can allow clinicians to detect cancer in the earliest, 

most easily treatable, pre-symptomatic stage. 
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4. Multi-functional targeted systems that can deliver multiple therapeutic agents directly to 

cancer cells. 

5. Systems that can provide real-time assessments of therapeutic and surgical efficacy. 

6. Novel methods that can manage the symptoms that reduce quality of life 

The use of nanocarriers as DDS for anticancer therapeutics has great potential to 

revolutionize the future of cancer therapies.  In addition nanocarriers with imaging agents offer 

opportunities to exploit optical imaging or magnetic resonance imaging (MRI) for cancer 

imaging and guided hyperthermia therapy.
40

  Inorganic nanoparticles have emerged as viable 

candidate as imaging, diagnostics and sensing agents for cancer treatments.
41

  The nano sized 

metal and semiconductor nanoparticles possess unique electronic, optical and catalytic properties 

that very significantly from the properties of their bulk counterparts.  Nanoparticles based on 

gold, semiconductor metals and iron oxide have been extensively studies as imaging and 

diagnostic agents.
40

  When applied to biological systems this metallic nanoparticles have the 

potential to improve the imaging techniques such as X-ray imaging, near infrared (NIR) imaging, 

position emission spectroscopy (PET) and magnetic resonance imaging (MRI).  Metallic 

nanoparticle probes can enhance the signal sensitivity, and spatial resolution thereby improving 

the sensitivity of the imaging techniques.  Of all the metallic nanoparticles, the focus has been on 

iron oxide nanoparticles due to their biocompatible nature and their superparamagnetic property.  

These iron oxide nanoparticles are responsive to externally applied electromagnetic radiations 

and will produce heat by magnetic hysteresis and will be discussed in detail in chapter 3.  In this 

dissertation the focus would be on the encapsulation of the iron oxide nanoparticles with the 

active agent into a polymer matrix of choice.  The encapsulated nanoparticles can be inductively 

heated by hyperthermia principals to obtain enhanced drug release profiles. 
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1.5.  Nanocarriers for cancer imaging and therapy 

The use of drug delivery systems (DDS), composed of a nanocarrier and its active agent 

(imaging and therapeutic agent), dramatically changes the physicochemical properties of the 

drug as well as its bio-distribution.  It is particularly relevant in the case of very active drugs 

whose use in the clinic has been limited due to their toxicity on vital organs such as heart, 

kidneys, bone marrow and it may also provide new delivery options for the existing drugs 

available.  The most common examples of nanocarriers are prodrugs, dendrimers, liposomes, 

micelles, hydrogels, carbon nanotubes, implantable systems, and polymeric composites.
42-48

  

Figure 1-4 shows the different types of nanocarriers used as drug delivery systems. Nanocarriers 

have the potential to improve the therapeutic index of the drug by increasing the drug payload 

within the carrier and achieve desired drug release, there by reducing the drug toxicity.  

Nanocarriers can also improve the solubility and stability of the drug, allowing a higher drug 

payload. 

Prodrugs are pharmacological substances that are administered in the inactive form and 

are metabolized in vivo into the active form.
49,50

  Prodrugs are used when the drugs have 

unattractive physiochemical properties.  They are generated through the chemical conjugation of 

an active agent with a carrier molecule, which could be a polymer or lipid.  Dendrimers are 

highly branched macromolecules of very small size, and mono-distributed molecular weight that 

can be used to deliver high payloads of drugs through conjugation of the active agent with the 

numerous surface or interior functional groups.
51-53

  The term originates from ‘dendron’ meaning 

a tree in Greek.   Dendrimers are generally prepared using either a divergent method or a 

convergent one.  Both prodrugs and dendrimers have the disadvantage of chemically modifying 
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the active agent, possibly affecting its in vivo activity.
53-56

  Liposomes are artificially prepared 

vesicles consisting of vesicles formed by phospholipids bilayers, and which deliver the drug into 

cells by fusing with cellular membranes.
48,57,58

  Liposomes can be prepared by disrupting 

biological membranes, for example by sonication.  Micelles consist of self-assembled vesicles 

formed by lipids or other amphiphilic molecules (including polymers), which can be used for 

encapsulation and isolation of hydrophobic molecules from the surrounding hydrophilic 

physiological environment.
47,59,60

  A typical micelle in aqueous solution forms an aggregate with 

the hydrophilic "head" regions in contact with surrounding solvent, and the hydrophobic "tail" 

regions in the micelle center.    Liposomes and micelles offer advantages such as prolonged 

circulation time, altered pharmacokinetics, and the ability to encapsulate highly hydrophobic 

drugs, but do not usually provide controlled release over time.
61-64

  Hydrogels are materials 

capable of uptaking significant amounts of water and swelling in result to changes in the 

surrounding environment, resulting in increased pore sizes that allow controlled release of its 

contents.
65,66

  Drug delivery systems based on hydrogels have been shown to result in low drug 

burst effects, but do not usually provide long term drug release.
62

  Carbon nanotubes are 

allotropes of carbon (graphene) with a cylindrical shape.
67,68

  Carbon nanotubes have many 

structures, differing in length, thickness, and in the type of helicity and number of layers. 

Although they are formed from essentially the same graphite sheet, their electrical characteristics 

differ depending on these variations.  Carbon nanotubes in higher concentrations can interact 

with the body fluids and alter the function of the immune systems.
69-71

   Implantable systems can 

provide long term drug release, but require invasive interventions for implantation and removal, 

thus resulting in lower patient acceptability.
72,73

  Polymeric composites encapsulate drugs in 

either a reservoir or matrix arrangement, in which the drug is either localized to the center of the 
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particle and surrounded by a polymer layer, or dispersed throughout a polymeric matrix, 

respectively.
74,75

   Polymeric nanocomposites have shown advantages over nanocarriers in term 

of stability, storage, desired drug release kinetics, toxicity and in-vivo activity. 

 

Figure 1-4: Types of nanocarriers 
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1.6. Polymeric composites 

Polymeric composites are attractive for medical purpose due to their relatively large 

functional surface which can carry, bind or absorb other chemical materials like drugs, proteins, 

genes, and imaging probes.
43,44

   Depending on the conformation, and on the material used to 

fabricate the polymeric composites various drug release kinetic profiles including constant (zero-

order) release can be obtained by the combined effects of drug diffusion and polymer 

degradation.   Polymeric composites can be classified into nano-composites and micro-

composites based on their sizes.  The micro-composites range in diameter from 1 to 250μm, 

while the nanocomposite ranges between 10 to 1000nm.  Polymeric composites can be 

synthesized from number of different natural and synthetic polymers.
76

 Some of the naturally 

occurring polymers used are dextran, cellulose, chitosan.
76

  Synthetic polymers used for 

composite synthesis are poly (methyl methacrylate) (PMMA), poly (styrene-co-vinylbenzyl 

chloride-co- divinyl benzene) (PSVBDVB), polylactic acid (PLA), poly glycolic acid (PGA), 

poly (lactic-co-glycolic acid) (PLGA)
76-78

. Non-biodegradable synthetic polymers like PMMA, 

PSVBDVB are used for synthesizing composites but are not suitable for in-vivo applications as 

they need to be removed surgically.
79

  The polyesters like PLA, PGA, and PLGA are approved 

by Food and drug administration (FDA) for human applications due to their biodegradability, 

biocompatibility, and lower toxicity and will be discussed in detail in chapter 5.
28,78

     Polymeric 

composites, in addition, because of their small size, are able to circulate through capillaries, 

preferentially escape into tumor tissue because of the enhanced permeability and retention effect 

(EPR), and may be taken up by cells for intracellular drug delivery, and will be discussed in the 
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“targeted drug delivery” section. It is these properties of nanoparticles that have been exploited 

for the development of the targeted delivery system in this project.   

1.7. Preparation of Polymeric nanoparticles 

Polymeric composites can be prepared either by directly from the monomers by 

conventional polymerization processes or can be fabricated from the pre-synthesized polymer.  

The conventional polymerization approach uses the monomer as the starting point.  Precipitation 

polymerizations and emulsion polymerization are some of the examples of conventional 

polymerization approach.
76,79,80

  The preparation of the polymeric composites from the pre-

synthesized polymers can be achieved by techniques such as emulsification solvent evaporation 

technique, salting out, spray drying, and nanoprecipitation to name some.
78,81-84

  The selected 

method determines the characteristics of nanocomposites, including the size, as it the most 

important property because it is strongly related to the administration mode.
85

  Another property 

influenced by the preparation process is the ability to interact with active principles contained in 

the drugs formulation.  As a consequence, a deep knowledge of the experimental parameters like 

the solvents, temperature, kind of stabilizer, and stirring rate involved in each method are crucial 

and can bring on the characteristics change in the resulting composites. 

1.7.1. Precipitation polymerization 

Precipitation polymerization is a type of conventional approach for the preparation of the 

nanocomposites.   Precipitation polymerization is a heterogeneous polymerization process that 

starts with a homogeneous system in the continuous phase, where the monomers and initiator are 

completely soluble, but upon initiation the formed polymer is insoluble and thus precipitates 

outs.
79

 
86

  After precipitation of the polymer the polymerization continues with the adsorption of 



www.manaraa.com

16 
 

the monomer and initiator on the surface of the formed polymeric particle leading to the growth 

of the particle.  Encapsulation of the active agent (therapeutic agent/ imaging probe) can be 

achieved by adding it along with the monomer initiator assembles.  In this technique it is difficult 

to obtain control over the size and morphology of the formed nanocomposites. 

1.7.2. Emulsion polymerization 

Emulsion polymerization is also a type of conventional approach used for the preparation 

of composites.  Emulsion polymerization is a type of radical polymerization where in the 

polymerization process starts within the emulsion formed by the monomer, initiator and water.
86-

88
  Encapsulation of the active agent can be achieved by adding it along with the monomer 

initiator assembles.   Polymerization is initiated by diffusion of a free-radical into the emulsion.  

The monomers continuously diffuse from the aqueous phase into the emulsion droplets.  Due to 

the small dimensions of the droplets, diffusion of another free-radical into the droplets leads to 

quick termination as a result of coupling of the free-radicals. Thus, the polymerization occurs via 

a single growing chain.  Hence, the molecular weight of the polymer bead can become very high 

before termination.
87,88

 

1.7.3. Emulsification solvent evaporation technique 

Emulsification solvent evaporation is the most promising technique employed for the 

preparation of polymeric nanocomposites. The method is based on the emulsification of an 

organic solution of the polymer in an aqueous phase followed by the evaporation of the organic 

solvent.
89-91

  The polymer is dissolved in a suitable solvent such as ethyl acetate, chloroform, 

methylene chloride.  The organic phase or aqueous phase is poured into the continuous phase 

(aqueous or organic phase) to form the emulsion, which is stabilized by dissolving a surfactant 
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into the continuous phase.   Emulsification is carried out under high-shear stress to reduce the 

size of the emulsion droplet which is directly related with the final size of the nanocomposites.  

The process of emulsification is followed by evaporation of the organic solvent under vacuum, 

which leads to polymer precipitation and nanoparticle formation. This method has two 

alternatives depending on the nature of the active agent to be entrapped within the 

nanocomposites: normal emulsions-oil-in-water (o/w) and double emulsions-water-in-oil-in-

water (w/o/w) techniques.
90

   

1.7.3.1. Oil-in-water emulsion technique: 

The technique is based on the emulsification of an organic solution containing the 

polymer and the active component in an aqueous phase, followed by the evaporation of the 

organic solvent.  Different surfactants such as poly vinyl alcohol (PVA), sodium dodecyl sulfate 

(SDS) or Pluronic F68 can be dissolved in the aqueous phase to stabilize the emulsion formed. 

The size reduction of the emulsion droplet is done by sonication or homogenization to achieve 

nanosized composites.  The evaporation step is required to eliminate the organic solvent present 

in the organic phase and leads to the precipitation of the polymer as nanocomposites with a 

diameter in the nanoscale range.  This technique is suitable for considerable number of 

hydrophobic agents that are soluble in variety of water immiscible solvents and, are poorly 

soluble in water.  Figure 1-5 represents the schematic representation of the oil-in-water 

emulsification technique.  Important parameters to be considered for the o/w emulsion are: 

molecular mass and the concentration of the polymer used, co-polymer ratio and end groups 

employed to functionalized the polymer, type and concentration of the surfactant used, phase 

ratio, solvent nature, evaporation rate, drug entrapment, additives used, and the shear stress 
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applied.
92

  o/w emulsion technique has been employed to prepare the PLGA nanocomposites in 

this project and will be discussed in depth in the following chapters. 

 

 

Figure 1-5: Schematic representation nanocomposite preparation by oil-in-water emulsion 
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1.7.3.2.Double emulsion (w/o/w) technique 

Double emulsion technique is most often used to encapsulate hydrophilic compounds.  

The initial step of the double emulsion technique is the formation of water-in-oil (w/o) emulsion.  

The hydrophilic agent is dissolved in small volume of aqueous phase and this is emulsified in an 

organic phase containing the polymer.  The w/o emulsion formed is further dispersed into larger 

volume of aqueous phase to form the double w/o/w emulsion.
93,94

  The w/o/w emulsion formed is 

sonicated or homogenized for droplet size reduction.  The size reduction carried out under strong 

shear stress has to be carried out carefully to minimize the hydrophilic drug diffusion to the 

external aqueous phase.  The final step is the evaporation of the organic solvent which is carried 

out under vacuum to avoid polymer and component damage.  The important parameters that 

need to be considered are: type and concentration of the polymer used, surfactant nature, 

polymer/surfactant ratio, solvents used, shear stress applied, evaporation and most important the 

ratio of the first/second phase. 

The main drawback of the double emulsion technique is the large particle size and low 

entrapment efficiency of the drug.
93,95

  The mechanism responsible for the poor entrapment 

efficiency is the diffusion of the hydrophilic active agent through the organic phase.  Also, the 

application of intense shear stress may cause degradation of the drug component.
93
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1.7.4.Salting out technique 

 

Figure 1-6: Schematic representation of nanocomposites preparation by salting out 

technique 
 

In the salting out technique the polymer of choice and the active component are dissolved 

in water miscible solvents such as acetone, ethyl acetate or tetrahydrofuran.  This organic 

solution is emulsified under vigorous mechanical stirring in an aqueous phase containing high 

concentration of the salting out agent and the colloidal stabilizer.  This o/w emulsion is diluted 

with sufficient volume of water, under mild stirring.  This reduces the ionic strength of the 

solution leading to the diffusion of the water miscible solvent into the aqueous phase, inducing 

the nanocomposites formation.  The final step is the purification by cross-flow filtration to 
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remove the salting out agent.
96,97

  Common salting out agents used are electrolytes like sodium 

chloride, magnesium chloride or magnesium acetate and non-electrolytes like sucrose.
96

  Figure 

1-6 represents the schematic representation of the salting out technique for nanocomposite 

preparation.   Important parameters to be considered are: molecular mass and concentration of 

the polymer used, mechanical stirring rate and time, nature of surfactant use, nature of the 

salting out agent used, type of water miscible solvent. 

The main drawback of the salting out technique is the requirement of and added 

purification step for the removal of the salting out agent used which is in high concentrations.  

Also the salts used are at times not compatible with the active agents.  Furthermore, this 

technique is suitable for the encapsulation of the lipophilic drugs only.
98

 

 

1.7.5.Nanoprecipitation technique 

In the nanoprecipitation technique the polymer and the active agent are dissolved in a 

water miscible organic solvent such as acetone or ethyl acetate.  The organic phase is then 

slowly poured in a controlled manner into an aqueous phase containing the surfactant such as 

PVA or poloxamer 188 under mild stirring.  Nanocomposites are instantaneously formed due to 

immediate reduction of the interfacial tension with rapid diffusion of the water miscible into the 

aqueous phase.  The organic solvent is removed by evaporation and the nanocomposite 

suspension is concentrated under reduced pressure, centrifuged and freeze dried to obtain 

nanocomposites.
99,100

  Important parameters to be considered are:  polymer concentration, 

nature of the surfactant used, polymer/surfactant ratio, nature of the solvent used, and the phase 

addition.
100
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 Nanoprecipitation technique is only suitable for hydrophilic agents because of their poor 

interaction with the polymer which leads to a considerable leakage of the drug into the aqueous 

phase during preparation.  Also, the active agent to be encapsulated needs to be highly soluble in 

the polar solvent and slightly soluble in water.
101

 

1.7.6. Spray drying 

 

Figure 1-7: Schematic representation of nanocomposite preparation by the spray drying 

technique 
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Spray drying technique enables the transformation of feed from a fluid state into dried 

particulate form by spraying the feed into a hot drying medium. It is a continuous particle 

processing drying operation as shown in Figure 1-7. The feed can be a solution, suspension, 

dispersion or emulsion. The dried product can be in the form of powders, granules or 

agglomerates depending upon the physical and chemical properties of the feed, the dryer design 

and final powder properties desired.  Large batch sizes are typically required as compared to 

emulsion techniques; therefore spray drying technique is often problematic. 

 

 

1.8. Targeted drug delivery of the polymeric nanocomposites to the tumor 

sites 

There are several targeting strategies that can be used to concentrate nanocomposites 

selectively at tumor sites by exploiting differences between malignant and normal cells.   The 

two main drug targeting strategies employed are- passive targeting and active targeting.
18

 

1.8.1. Passive targeting: 

Passive targeting takes advantage of the anatomical difference between the normal and 

tumor tissues to deliver the drug at the tumor site.   As the tumor grows (~2mm in diameter) the 

normal tissues are displaced.  The growing tumor activates the angiogenic process, to generate 

new blood vessels towards the tumor to supply oxygen and nutrients.  The newly formed tumor 

blood vessels vasculature is very different from normal blood vessels, as they are dilated, 

irregular in shape and leaky or defective due to poorly organized endothelial cells.
21

 The 

disorganized pathology of angiogenic tumor vasculature with a discontinuous endothelium leads 

to hyperpermeability to circulate the nanocomposites and lack of effective tumor lymphatic 
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drainage leads to subsequent accumulation of the nanocomposites.  This increased permeability 

of the tumor vasculature is the key feature in passive targeting of the nanocomposites.  This is 

popularly known as enhanced permeability and retention effect (EPR) which results in the 

accumulation of macromolecular drugs and polymeric nanocomposites at the tumor site and 

thus increasing the drug concentration.
3,102

  By taking the advantage of the EPR effect the DDS 

can progressively but selectively build up within the tumor cells and deliver drugs with higher 

drug concentrations compared to the normal cells.  Figure 1-8 illustrates the enhanced delivery 

of the drug through the ERP effect with less normal cell targeting.  

Localized delivery is another approach in which the drug loaded nanocomposites can be 

directly delivered to the target site thus minimizing the circulation of the drug and lowering 

toxicity.
25

  This method is only suitable for the tumors that are easily accessible. 
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Figure 1-8: Illustration of the passive targeting approach with enhanced delivery of the 

drug to the tumor site due to the ERP effect 
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1.8.2. Active targeting: 

 Active targeting strategy exploits the specific binding affinities of targeting 

ligands that are bound to the nanocomposite system used to bind to the target site receptor 

functionalities, thereby allowing preferential accumulation of the drug within the tissue or 

cells.
3,18,102

  This strategy also takes the advantage of the EPR effect for the accumulation of the 

nanocomposites into the interstitial fluid of the tumor and is illustrated in Figure 1-9.  The main 

parameter to be kept in mind is the proper selection of the targeting agent, which should be 

available in abundance, should have high affinity and selectivity of binding to the cell surface 

and should be apt to chemical changes on conjugation.  The identity and characteristics of the 

targeting agent are also important for longer circulation time, cellular uptake, affinity, and 

removal of the nanocomposite.  Therefore, a specific binding capacity of the targeting agent to 

tumors is essential in the success of the drug delivery system.  An increased site specificity and 

internalization can improve the efficacy of treatment and decrease the possibility of the serious 

side effects.  Ligands such as antibodies, saccharides, aptamers, hormones, lectins and low 

molecular compounds  binds to their specific receptor on the cellular surface and trigger the 

internalization process of the drug by means of receptor-mediated endocytosis (REM).  Surface 

receptors like folate receptor (FR), the transferrin receptor (TfR) and the epidermal growth factor 

reseptor (EGRF) have been highly investigated for site specific targeting.
103-105
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Figure 1-9: Active targeting strategy for the delivery of drugs through ligand-receptor 

interaction. 

1.9. Folate receptor 

Folic acid (FA) also known as folate or vitamin B9 is a low molecular weight (MW-441) 

water soluble vitamin required by all living cells for nucleotide biosynthesis and for normal 

metabolic maintenance of 1-carbon pathways.    Cellular uptake of folates are facilitated by 

either a low affinity reduced folate carrier which is present in virtually all cells of the body, or a 
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high affinity folate receptor (FR) which exhibits highly limited distribution within the body 

cells.  The folate receptor is a 38 kDa glycosyl-phosphatidylinositol-anchored glycoprotein that 

has the affinity for both folic acid and folate linked cargos. 
106

  Two membranous forms of FR-

alpha (α) and beta (β) have been identified.  Both α and β forms have high FA binding affinity, 

however they display some difference with respect to their affinity for antifolates.
107,108

 The 

reduced folate carrier is selective in facilitating transport of reduced forms of folic acid only 

while the FR has the ability to transport both folic acid and folate-linked cargos.  Once the 

folate linked cargos are conjugated to the cell surface FR they are internalized into the cells 

through a process called receptor-mediated endocytosis.  

 

Figure 1-10: Structure of Folic acid 

It has been found that FR is up-regulated in more than 90% of non-mucinous ovarian 

carcinomas. It is also found at high to moderate levels in kidney, brain, lung, and breast 

carcinomas while it occurs at very low levels in most normal tissues.   The FR density also 

appears to increase as the stage of the cancer increases.
18,106

   In addition, folic acid is required 

for essential cell function, therefore the cargo attached to the ligand are retained within an 

endocytic vesicle.  While, the cargos attached to antibodies, hormones, and other related ligands 
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are normally internalized to clear the ligand from the receptor.  Exploiting the above-mentioned 

facts, it can be hypothesized that folic acid conjugation to polymeric nanocomposites will 

improve drug selectivity and decrease negative side effects.     Folic acid has emerged as an 

attractive ligand for drug targeting due to its low molecular size, which allows for good tissue 

penetration. The structure of folic acid (FA) is shown in Figure 1-10.  Also folic acid can be 

easily attached to the polymeric composites through carbodiimide chemistry and will be 

discussed in detail in chapter 6. 

1.10. Summary of Objectives 

 The overall goal of this dissertation work is to develop and design a novel controlled 

release drug delivery system (DDS) with imaging and therapeutic capabilities.   The polymeric 

coating used helps reduce the toxicity of the active agent.  Some of the main objectives of this 

dissertation work are: 

1. Study the synthetic variation upon encapsulation of the magnetic iron/iron oxide 

nanoparticles by synthetic polymer.  Also, study the dilution effect of the saturation 

magnetization of the iron/iron oxide nanoparticles due to the polymer coating. 

2. Develop nano sized mono-dispersed biodegradable poly (lactic-co-glycolic acid) (PLGA) 

composites containing the iron/iron oxide nanoparticles as dual modal imaging and 

therapeutic drug delivery carrier. 

3. Study the release of the drug analog from the magnetic polymeric composites upon 

heating due to magnetic hyperthermia phenomenon with electromagnetic radiations. 
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2.1. Introduction 

The characterization of the synthesized nanomaterials is a very important stage for the 

advancement of quality scientific research.  From the development of the nanomaterial’s 

synthesis technique to the quality control testing of the already established techniques, 

characterization of the nanomaterial is essential.  The characterization of the material aids in the 

precise identification of phases, size, morphology, material impurities, and surface chemistry 

effects of the material.  Characterization of the nanomaterials synthesized plays an important role 

in the scientific research development; hence this chapter will be focused on some of the 

principal characterization techniques used in this research work.   

Characterization technique Application 

X-ray Diffraction (XRD) 
Phase Composition, crystal shape and 

crystallite size 

Scanning electron microscopy (SEM) and 

Transmission electron microscopy (TEM) 
Nanomaterial size and morphology 

Thermogravimetric analysis (TGA) 
Mass change in materials associated with 

dehydration, decomposition, and oxidation 

Vibrating sample magnetometry (VSM) 
Magnetic property and corecivity 

measurements 

Fluorescence spectroscopy Track (bio-) chemical reactions 

Fourier transform infrared spectroscopy (FTIR) Functional group analysis 

Ultraviolet-visible spectroscopy (UV-vis) 
Characterization and quantitative 

determination of analytes 

 

Table 2-1 Principal characterization techniques used 
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2.2. X-ray Diffraction (XRD)  

X-ray powder diffraction (XRD) is an instrumental technique that is used to identify 

crystalline materials and it is a fast and a reliable tool for material identification.  X-rays are 

electromagnetic radiation with energies in the range of 100 eV - 100 keV.  For diffraction 

applications, only short wavelength x-rays (hard x-rays) in the range of a few angstroms to 

0.1˚A are used.  As the wavelength of x-rays is equivalent to the size of atoms, they are ideally 

suited for probing the structural arrangement of atoms and molecules in a wide range of 

materials. The energetic x-rays can penetrate deep into the materials and provide information 

about the bulk structure.  X-rays primarily interact with electrons in the atoms.  When x-ray 

photons collide with sample, a portion of the beam will be scattered in all directions from the 

material and constructively interfere in distinct directions based upon the symmetry of the 

repeating crystal structure associated with the sample material.  The angle where the peaks in 

the x-ray diffraction spectrum occur is given by Bragg's law (Eq.2.1):  

nλ=2d(hkl)sinθ                                                                                                           2.1                                                                                                               

Where λ is the wavelength of the x-ray beam, d(hkl) is the spacing between the (hkl) 

crystallographic plane contributing to the diffraction peak, θ is the angle of incident x-ray, and n 

is an integer for the order of reflection.  This phenomenon creates diffraction patterns as you 

scan the incident angles, which are typically reported and graphed as 2θ.  This diffraction 

patterns have been calculated and experimentally tabulated into data bases for easier matching 

and sample crystal structure determination.   Figure 2-1 represents the diffraction of the x-rays by 

plane of atoms.  It is important to note that the d-spacing provides a unique fingerprint of the 

sample materials under investigation.   
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Figure 2-1: Diffraction of the x-rays by plane of atoms 

 

The primary application of XRD is to investigate the structural nature of the material, for 

example, the size and crystallinity of the sample material.  A material’s structural nature can be 

crystalline or amorphous.  In crystalline materials a higher degree of constructive interference 

will occur, thereby producing sharp constructive diffraction lines in the XRD pattern.  While in 

amorphous materials there are edges, mild distortions, and finite crystalline planes that will cause 

a broadening affect in the diffraction pattern.  There are many factors that may also contribute to 

the broadening of diffraction lines, for example, instrumental broadening, micro-strain (lattice 

strain), powder inhomogeneity, and temperature. Broadening in the diffraction pattern can also 
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occur with a reduction in particle or crystallite size. Peak width due to crystallite size varies 

inversely with crystallite size. So as the crystallite size gets smaller, the peaks get broader. Paul 

Scherrer, first observed that small crystallite size could give rise to peak broadening. He derived 

a well-known equation for relating the crystallite size to the peak width, which is called the 

Scherrer formula (Eq.2.2) 

 (  )  
  

     
                                                                                                            2.2 

For this equation, λ is wavelength of the incident x-ray and θ is the angle of the incident 

x-ray obtained from the center of the diffraction peak, B refers to the peak width, typically 

referred to as the full width at half maximum (FWHM) of the diffraction peak, L the crystallite 

size and K is the Scherrer constant, typically 0.94 for spherical particles with cubic symmetry.  

The Scherrer equation is limited to nano-scale particles and is not applicable to grains larger than 

about 0.1 μm.  A small impurity in a sample is enough to overwhelm the diffraction pattern and 

gives a size value much larger than would be representative of the majority of the sample in 

question.  This is a major reason that other particle size determining methods such as TEM, SEM 

are required for nanomaterials research.  Another reason for utilizing other size determining 

methods is that only crystalline materials are apparent in the XRD diffraction pattern.  This 

means that amorphous regions, say on the surface of nanoparticles would not be included in the 

sizes determined by XRD.  Also band broadening becomes a major factor in nanoparticles 

research.  Even for crystalline materials, once below 5-10 nm the diffraction pattern peaks appear 

more as broad humps than spikes.  As the peaks broaden it becomes more difficult to separate the 

background, sample, and impurities. 
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Figure 2-2: Schematic representation of the X-ray diffractometer 

 

Figure 2-2 shows the schematic of the θ: θ x-ray diffractometers. In the θ: θ x-ray 

diffractometers the sample is stationary in the horizontal position, and the X-ray tube rotates at a 

rate -θ°/min and the detector rotates at a rate of θ °/min.   The other type of x-ray diffractometer 

is θ: 2θ in which the X-ray tube is stationary, the sample moves by the angle θ and the detector 

simultaneously moves by the angle 2θ.  The drawback of θ: 2θ x-ray diffractometer is that at 

high values of θ small or loosely packed samples may have a tendency to fall off the sample 

holder.  In the commercial x-ray diffractometer the X-rays are generated from an X-ray tube 

under vacuum when the filament within the tube is heated by the application of a current. The 

numbers of electrons emitted from the filament are directly related to the amount (voltage) of the 
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applied current. The high voltage accelerates the electrons towards a target, typically made of 

copper or molybdenum; the wavelength of the X-ray is dependent on the type of the target. Next, 

these x-rays are directed towards the finely ground sample and finally, the detector detects the 

signal which will be processed either electronically or by microprocessor to a count rate.    

For the purposes of this work, powder X-ray diffraction (XRD) was taken on a 

Panalytical X’pert pro diffractometer.  A copper anode was used as the source of x-rays with a 

current of 45 mA at an accelerating voltage of 40 kV. As described previously, the copper source 

emits x-rays with Kα1 and Kα2 wavelengths of 1.540 ˚A and 1.544 ˚A respectively.  The dried 

powder samples were gently ground using a mortar and pestle and then pressed onto a zero 

background, low volume silicon sample holder. The sample holder was then placed in the 

instrument for XRD analysis. Upon completion of the run, the data were analyzed in the 

Highscore plus program, which has a built-in diffraction library to compare the samples 

diffraction pattern to the diffraction patterns in the JCPDS-ICDD database.    XRD was used for 

phase identification, identifying the purity of samples, and determining the crystallinity of 

products.   

2.3. Scanning electron microscopy (SEM) 

Scanning electron microscope (SEM) uses a focused beam of high-energy electrons to 

generate a variety of signals at the surface of solid sample. The signals derived from electron- 

sample interactions reveals information about the sample including external morphology 

(texture), chemical composition, and crystalline structure and orientation of materials making up 

the sample.  The combination of higher magnification, larger depth of focus, greater resolution, 

and ease of sample observation makes the SEM one of the most heavily used instruments in 

research areas today. 
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Figure 2-3: Schematic of the main components of SEM 
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Figure 2-3 shows a schematic of the main components of the SEM.  The electron beam, 

which typically has an energy ranging from 0.5 keV to 40 keV, is focused by one or two 

magnetic lenses to a spot about 0.4 nm to 5 nm in diameter. The beam passes through pairs of 

scanning coils or pairs of deflector plates in the electron column, which deflect the beam in the x 

and y axes so that it scans in a raster fashion over a rectangular area of the sample surface.  The 

electron beam interacts with the sample and emits out a variety of signals.  These signals include 

secondary electrons (SE) which are emitted from the surface as they are knocked out of the 

valence orbitals of the surface atoms, backscattered electrons (BSE) which are scattered off the 

surface, and photons (characteristic X-rays that are used for elemental analysis and continuum X-

rays) as depicted in Figure 2-4 

  The secondary electrons are used to create an image of the surface, which has a 3D 

quality as the angle of the secondary electron projection depends on the angle of the incoming 

beam. Thus steep surfaces and edges tend to be brighter than flat surfaces, which results in 

images with a well-defined 3D appearance. A backscattered electron profile is also collected as 

the number of backscattered electrons increases with atomic number, so atoms of a higher atomic 

number appear brighter in the image.  The photons are produced by inelastic collisions of the 

incident electrons with electrons in discrete orbitals (shells) of atoms in the sample. As the 

excited electrons return to lower energy states, they yield X-rays that are of a fixed wavelength.  

Thus, characteristic X-rays are produced for each element in sample material that is "excited" by 

the electron beam. The SEM is routinely used to generate high-resolution images of shapes of 

objects and to show spatial variations in chemical compositions.  Precise measurement of very 

small features and objects down to 50 nm in size can be accomplished using the SEM.  Also the 

SEM analysis is considered to be "non-destructive"; that is, x-rays generated by electron 



www.manaraa.com

39 
 

interactions do not lead to volume loss of the sample, so it is possible to analyze the same 

materials repeatedly.  

 

Figure 2-4: Origin and information depth of secondary electrons (SE), backscattered 

electrons (BSE), and x-rays in the diffusion cloud of electron beam into the sample 
 

In this research work the size, size distribution, and morphology of the samples were 

determined using Hitachi SU-70 field emission scanning electron microscope (SEM) equipped 

with digital image acquisition, EDX, WDX, EBSP, STEM, BSE, CL detectors.  The morphology 

of the nanomaterial sample is represented in the SEM image by dark and grey areas.  The 

contrast is due to the interaction of the electron beam with the sample.  The SEM samples are 
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prepared by lightly sprinkling the powdered sample on a conductive carbon tape mounted on the 

sample holder.  The sample is then lightly pressed to seat and then sprayed with canned air to 

remove any loose sample from top.  The sample was then sputtered with gold to make it 

conductive and reduce charging.  Charging is a buildup of excess of electrons (charge) on the 

surface of the non-conductive sample, which causes an undesired electron beam deflecting 

leading to an increase in the brightness of the image.  The sample holder is then placed in the 

sample compartment of the microscope and the images are obtained as described above. 

SEM can provide precise resolution around ±50 nm and has ±200,000 X resolution 

power, but for nanoparticle research higher resolution up to few angstroms is desirable.  For this 

purpose transmission electron microscopy (TEM) is utilized which has a resolution around ± 0.2 

nm.  Both TEM and SEM utilize electron beams to detect the size and morphology of sample 

materials.  In a SEM image is produce from electrons detected after scattering off the surface of 

the sample where as in a TEM image is produced by electrons passing through the sample placed 

on a grid.  The electron density of the solid nanomaterial sample scatters some of the electrons, 

with the remaining electron beam passing by to produce a silhouette of the material on a screen 

for imaging. The TEM image provides information about the size, shape, size distribution, and 

uniformity.  Also the core-shell nature of the nanomaterial sample can also be determined by the 

difference in the electron density. High resolution TEM can see lattice fringes and can be used 

for electron diffraction which will give insight into the crystal structure similar to XRD.  In this 

work the TEM was performed on Carl Zeiss Libra 120 Plus Field Emission Transmission 

Electron Microscope (TEM) to evaluate the size and morphology of the synthesized 

nanoparticles. 
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2.4. Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is an instrumental technique where in the mass of the 

sample in a controlled atmosphere is recorded continuously as a function of temperature or time 

as the temperature of the sample is increased linearly with time.  The thermogravimetry 

instrument consists of a sensitive analytical micro balance, furnace, purge gas system for 

providing an inert atmosphere and a computer and processor for instrument control and data 

recording.  Figure 2-5 represents the schematic representation of the components of a thermal 

gravimetric balance. 

TGA provides quantitative measurement of mass change in materials associated with 

transition and thermal degradation. TGA records change in mass from dehydration, 

decomposition, and oxidation of a sample with time and temperature.  The most important 

application of thermogravimetric technique is found in the study of polymers.  Thermograms 

provide information about the decomposition mechanism for various polymers.  Also the 

uniformity in the polymer can be known.  A tactic polymer would have fewer number of 

decomposition events as compared to an atactic polymer.   The application of TGA in 

nanomaterial research is to determine the amount of organic ligands/impurities that are adsorbed 

onto a nanoparticle surface formed during the synthesis procedure.  This percentage of organics 

associated with the total mass of the nanoparticle is important information for magnetization 

mass correction as it is dependent on the mass of the magnetic material and not the total mass of 

the system.   It also provides information about the mass percentage of the organics in the 

sample.  This information can give indication of how well a surface is coated with a functional 

ligand, and in some way give insight to the surface area to volume ratio of the sample. 
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Figure 2-5: Block diagram of the Thermogravimetric analyzer 

 

TGA also offers an easier way of annealing samples where in the sample size is critical.  

This use may not be as common, but has the advantage of working with smaller sample size than 

a traditional heating furnace, such as a tube furnace.  It also allows for the monitoring of mass 

loss of a sample under different gaseous atmosphere.  In this work the thermogravimetric 

analysis was performed on a TA instruments Q5000 thermogravimetrtic analyzer.  The sample is 

positioned on a platinum pan that is supported on an analytical balance which located outside the 

furnace chamber. After the balanced is zeroed, the sample is heated and the weight signal is 

stored as a function of temperature and time. 
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2.5. Vibrating sample magnetometry (VSM) 

The vibrating sample magnetometer is an analytical instrument employed for determining 

magnetic properties of a large variety of materials: diamagnetic, paramagnetic, ferromagnetic, 

ferromagnetic and antiferromagnetic. This experimental technique was invented in 1956 by 

Simon Foner, a scientist of the MIT.  A vibrating sample magnetometer (VSM) operates on 

Faraday's Law of Induction, which states that a change in magnetic field will produce an electric 

field. This electric field can be measured and provides information about the changing magnetic 

field.  As shown in Figure 2-6  VSM operates by first placing the sample in a constant magnetic 

field.  If the sample is magnetic, this constant magnetic field will magnetize the sample by 

aligning the magnetic domains or magnetic spins with the applied field. If the sample vibrates in 

a sinusoidal motion, an electrical signal can be induced between two coils (pick-up coils) 

according to the Faraday’s law.  This electric signal has the same frequency of vibration and the 

amplitude is proportional to the magnetization of the sample.  The produced current will be 

amplified and then using a computer interface that contains a specific software system, 

information about the magnetization of the sample and its dependence on the magnetic field 

could be obtained. 

The ability to perform measurements at various temperatures is available for the VSM 

but the resolution and sensitivity is not comparable to that of the SQUID, and thus  most of the 

VSM are set up to measure at room.  The main advantage that the VSM offers to material 

research is that the measurements can be done much more quickly than using a SQUID, and do 

not require liquid He.  A Lakeshore model 7300 room temperature vibrating sample 

magnetometer was used determine the magnetic properties of materials in this research work.  

The measuring field was oriented either parallel or perpendicular to the plane of the sample 
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depending on the sample shape i.e. for example pellets were oriented parallel, while powders 

were oriented perpendicular to the magnetic field.  

 

  

 

Figure 2-6: Schematic showing the main components of vibrating sample magnetometer 

(VSM) 

 



www.manaraa.com

45 
 

2.6.Fluorescence spectroscopy 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy where the molecules 

of the sample are excited by irradiation at a definite wavelength of light (usually ultraviolet) and 

emit radiation of lower energy (higher wavelength).  The emission spectrum provides 

information for both qualitative and quantitative analysis.   When light of an appropriate 

wavelength is absorbed by a molecule (i.e., excitation), the electronic state of the molecule 

changes from the ground state to one of many vibrational levels in one of the excited electronic 

states. The excited electronic state is usually the first excited singlet state, S1 (Figure 2-7).  

Collisions with other molecules cause the excited molecule to lose vibrational energy until it 

reaches the lowest vibrational state of the excited electronic state. The molecule then drops down 

to one of the various vibrational levels of the ground electronic state again, emitting a photon in 

the process. As molecules may drop down into any of several vibrational levels in the ground 

state, the emitted photons will have different energies, and thus frequencies.   Fluorescence is 

one of these processes that correspond to the relaxation of the molecule from the singlet excited 

state to the singlet ground state with emission of light.  The wavelength and thus the energy of 

the emitted light are dependent on the energy gap between the ground state and the excited state.  

The fluorescence quantum yield (Φ) gives the efficiency of the fluorescence process. It is defined 

as the ratio of the number of photons emitted to the number of photons absorbed (Eq. 2.3). 

    
  

∑    
                                                                                                  2.3 

Where kf is the rate of spontaneous emission of radiation and ∑iki is the sum of all rates of 

excited state decay. Other rates of excited state decay are caused by mechanisms other than 

photon emission and are therefore called "non-radiative rates", which can include: dynamic 
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collisional quenching, near-field dipole-dipole interaction internal conversion and intersystem 

crossing as shown in Figure 2-7. 

 

Figure 2-7: Electronic transition energy level diagram 
 

In this research work fluorescent dyes Tris-(2,2'bipyridyl)dichlororuthenium (II), 

Rhodamine B were used as the drug analog.  The release of these dyes from the polymeric 

composites was determined using the fluorescence spectroscopy.  Fluorescence spectroscopy is 

recognized as one of the most sensitive technique, and it is possible to measure the concentration 

of the fluorescent substance at nano gram levels.   This work was carried out on Cary Eclipse 

Fluorescence Spectrophotometer equipped with a xenon lamp.  Figure 2-8 represents the 
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schematic representation of the fluorescence spectroscopy.  The light from the xenon source that 

is excited passes through the monochromator and lands on the sample. The sample absorbs a 

portion of the incident light and the fluorescent molecules in the sample emit the light. A 

detector is attached at a viewing angle (usually around 90 degrees), which prevents incident light 

from contaminating the detected fluorescent light. 

 

Figure 2-8: Block diagram of a fluorescence spectroscopy 
 

2.7.Fourier transform infrared spectroscopy (FTIR) 

Infrared spectroscopic technique utilizes lower energy infrared (IR) radiation (10000 – 

100 cm
-1

) to induce vibrational and rotational excitation of atoms and groups of atoms within a 
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molecule.  When the frequency of the incident light equals to resonant frequencies of the internal 

molecular vibrations in a material, absorption occurs causing the molecule to vibrate in a higher 

energy level.  Absorption occurs when the incoming IR radiation that is interacting with a 

molecule has sufficient energy to raise the vibrational energy level of the molecular system to the 

next allowed level.  The frequencies and intensities of absorbed infrared light depend on the 

specific bond strengths and the geometrical shapes of the molecule.  The absorption pattern 

(called a spectrum) is unique for each material.  The infrared spectrum is measured by either 

absorbance or percent transmittance on the y-axis and by either the wavelength (μm) or 

wavenumber (cm
-1

) to measure the position of an infrared absorption on the x-axis.  Analysis of 

this absorption spectrum reveals details about the molecular structure of the sample based on the 

known symmetric and random vibrational modes of different atomic arrangements.  This can be 

very helpful in functionalization studies for scientific research. For example, the shifting or 

disappearance of absorption bands in the spectrum of a given functional ligand can be evidence 

to change in the functional group of the ligand.  Although this technique does not typically give 

conclusive evidence alone, it can be very powerful if used in conjunction with other data. 

The main component in the FTIR spectrometer is an interferometer.  The interferometer 

consists of two mirrors and a beam splitter positioned at an angle of 45 degrees to the mirrors 

which separate it into two beams. One will reflect from a fixed mirror in place and the other will 

reflect from a moving mirror.  The two beams are then reflected back and recombined at the 

beam splitter with half of the light passing on toward the sampling areas and half travelling back 

toward the source. The signal at the detector is a cosine wave. 
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Figure 2-9: Block diagram of FTIR spectrometer 
 

 Fourier transform infrared (FTIR) spectroscopy was performed with Thermo Nicolet 

NEXUS 670 FTIR attached to an attenuated total reflectance (ATR) accessory.  ATR was fitted 

with a single bounce diamond at 45° internally reflected incident light providing a sample area of 

1 mm in diameter with a sampling depth of several microns.  This accessory provides for the 

non-destructive measurement of samples with little or no preparation.  A small amount of the 

sample was directly placed on the diamond disk and scanned for absorbance over the range from 

4000 to 500 cm
–1

 wave numbers at a resolution of 1 cm
–1

. 
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2.8. Ultraviolet-visible spectroscopy (UV-vis) 

Ultraviolet visible spectroscopy measures the response of a sample to ultraviolet and 

visible radiations region of electromagnetic spectrum.  When the sample is irradiated with light 

with wavelength in the UV-vis region, the molecular atoms undergoes electronic transitions from 

the ground state to the higher excited state.  These electronic transitions in organic compounds 

can be explained by one of the following processes: σ to σ* transition that is present in 

compounds containing single bonds.  π to π* transition that takes place in compounds that 

contain double bonds.  n to σ* and π to π* transitions are present in compounds containing lone-

pair of electrons and a single or a double bond respectively.  Also, d-d or f-f transitions in 

inorganic compounds take place between a ground and an excited state of the d and f orbitals 

respectively.  The wavelength and amount of light that a compound absorbs depends on its 

molecular structure and the concentration of the compound used.   

Figure 2-10 shows the basic setup of the UV-vis spectrometer. A beam of light from a 

visible and/or UV source passing through the diffraction grating where the light is separated into 

its component wavelengths.  Then the monochromatic light beam travels through the aperture, 

which is an opening that determines the cone angle of the light rays that comes to focus in the 

image plane. Finally the light passes through the sample before the materials absorption is 

detected.  In this work UV-vis spectroscopy was used to determine the folic acid conjugation to 

the PLGA polymer.  The UV-vis spectroscopy was performed on Hewlett Packard 8453 UV-

visible Spectroscopy Systems. 
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Figure 2-10: Block diagram of the UV-vis spectrophotometer 
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3.1. Iron oxide nanoparticles 

Magnetic iron oxide nanoparticles are iron oxide particles with diameters between 1-

100 nanometers (nm).  There are several different forms of iron oxide; however the three main 

forms in which the iron oxide nanoparticles exist are magnetite ( Fe
II
Fe

III
2O4, ferrimagnetic), 

maghemite (α-Fe2O3, ferrimagnetic), and hematite (γ- Fe2O3, weakly ferromagnetic or 

antiferromagnetic).
109,110

  Magnetite has an inverse spinel structure with the divalent Fe
2+

 ion in 

tetrahedral (A sites) coordination and the trivalent Fe
3+

 ions in octahedral (B sites) coordination 

with oxygen as shown in Figure 3-1.
111

  Maghemite also have an inverse spinel structure like 

magnetite in which each cell contains 32 oxygen ions, 21 1/3 Fe
3+

 ions and 2 1/3 vacancies.
110

  

It differs from magnetite in that all or most of the iron are in the trivalent Fe
3+

 state and cations 

are distributed randomly over the 8 tetrahedral and 16 octahedral sites.  Hematite has a 

rhombohedral crystal structure with the trivalent Fe
3+

 ions in octahedral coordination with 

oxygen.
110

  These nanoparticles can be synthesized using a variety of synthetic techniques such 

as the sol-gel process, reverse micelles technique, chemical precipitation, hydrothermal 

synthesis, polyol technique, and physical vapor deposition, and pyrolysis.
112-117

 All these 

methods are well used procedures for nanoparticles preparation; however, the particles 

produced by these techniques differ in the size, morphology, size distribution and magnetic 

properties.
110,116,118
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Figure 3-1: Drawing of the spinel structure illustrating the octahedral and tetrahedral 

sites 
 

3.2. Magnetism 

Magnetic property in general sense arises from unpaired electron spins in outer shell, or 

valence electrons of an atom.   An Iron atom with 4 unpaired electrons in 3d shell has a strong 

magnetic moment.  Ions Fe
2+

 has also 4 unpaired electrons in 3d shell and Fe
3+

 has 5 unpaired 

electrons in 3d shell. Therefore, when nanoparticles are formed from iron atoms or ions Fe
2+

 

and Fe
3+

 they can be in ferromagnetic, antiferromagnetic, or ferrimagnetic states.  A better 

understanding of magnetism in general is an essential step on the way into understanding the 

magnetism of these nanoparticles.  The magnetic behavior of materials can be classified into 

five major groups as shown in Table 3-1 
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Types of 

Magnetism 
Applied magnetic field Resultant effect 

Diamagnetism 

 

 Repel the field 

 Negative magnetic 

susceptibility 

Paramagnetism 

 

 Align from the field 

 Small positive 

magnetic 

susceptibility 

 

Ferromagnetism 

 

 Align with the field 

 Large positive 

magnetic 

susceptibility 

Antiferromagnetism 

 

 Half of the spins 

align with the field 

 Divergence observed 

in the magnetic 

susceptibility 

Ferrimagnetism 

 

 Some spins align 

with the field and 

some did not 

 Positive magnetic 

susceptibility 

 

Table 3-1: Schematics of the five main types of magnetism seen in a material and their 

response to the applied magnetic field.  Paramagnetic, Ferromagnetic, and Ferrimagnetic 

materials have net positive magnetic moment in the direction of the applied field.  

Diamagnetic and Antiferromagnetic materials have a zero net moment. 
 



www.manaraa.com

56 
 

3.3.Diamagnetism and Paramagnetism 

Diamagnetism refers to materials that are repelled from an applied magnetic field.  

Diamagnetic material has paired electrons in their valence shell, leading to a net zero magnetic 

moment.  When an external field is applied a force is generated by the field that leads to 

speeding up or slowing down of paired electrons.  This leads to the change in the magnetic 

moment of the orbital in a direction opposite to the external field.  The spins in diamagnetic 

materials align in an opposite direction to the field leading to negative magnetic susceptibility.   

Paramagentism is the direct opposite of diamagnetism which takes on an alignment in 

the direction of the applied magnetic field i.e. they are attracted to a magnetic field.  In a 

paramagnetic material, the spins of the electrons are not coupled and will have a resultant 

magnetic moment.  This moment tend to align with the applied magnetic field leading to a 

small positive magnetic susceptibility.  Paramagnetic materials have short range magnetic 

order because they relax back to their original random state in the absence of magnetic field.  

The other basic forms of magnetism- ferro, ferric and antiferro magnetism like paramagnetism 

possess magnetic moment.  The only difference to paramagnetic material is in the ability of 

these magnetic materials to interact and couple with the applied magnetic field through 

exchange coupling. 

3.4. Exchange coupling 

Exchange coupling is a quantum mechanical phenomenon arising due to the relative 

orientation of the spins of two electrons.  There are three types of exchange coupling by which 

atomic spins in a material can interact.  These are direct exchange, indirect exchange, and 

superexchange that may produce either parallel or antiparallel exchange coupling.  Direct 

exchange occurs due to quantum mechanical coupling between electrons of adjacent atoms. 



www.manaraa.com

57 
 

For example if a system involves two atoms, each with one electron and if the interatomic 

distance is relatively small, the electrons will spend most of their time between the nuclei to 

minimize Coulomb interactions.  Pauli’s exclusion principle states that electrons in the same 

space and time must possess opposite spins, as illustrated in Figure 3-2.  This gives rise to 

antiparallel alignment and therefore negative exchange. 

 

Figure 3-2: Direct exchange coupling between the neighboring atoms leads to an 

antiparallel alignment of the electrons. This is due to Pauli’s exclusion principle when the 

electrons are located in the same space and time. 
 

Indirect exchange coupling takes place when the interatomic distances are larger.  The 

electrons then tend to be away from each other to minimizing electron-electron repulsion. This 

results in the parallel alignment or positive exchange as shown in Figure 3-3. 

 

Figure 3-3: Indirect exchange coupling takes place due to larger interatomic distance 

between the adjacent atoms leads to a parallel alignment 
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Superexchange occurs between two atoms that are too far apart to be connected by 

direct coupling, but are connected by some other nonmagnetic atom, such as oxygen. Fig. 3.4 

shows a simple representation of superexchange between two spins connected by a common 

nonmagnetic atom.  Parallel or anti parallel alignment of the coupled electrons is dependent on 

the distance and orientation or bond angles of the exchange.  For example, the tetrahedral sites 

in the spinel ferrite structure align anti-parallel to the octahedral sites via this superexchange 

mechanism.  The metal cations in the ferrites and metal oxides interact through superexchange. 

 

Figure 3-4: Superexchange between two magnetic atoms through a nonmagnetic atom 

 

3.5. Ferromagnetism, Ferrimagnetism and Antiferromagnetism 

Ferromagnetic materials exhibit parallel alignment produced due to indirect coupling of 

the electron spins.  The electron spins in ferromagnetic materials align parallel to each other 

within small regions of the material to form domains. In an un-magnetized state, the domains 

are aligned at random so there is no overall magnetic effect. When an external magnetic field is 

applied to the material, the domains align to point in the same direction, producing a strong 

overall magnetic effect.  Ferromagnetic materials tend to have long range ordering and show 

high positive magnetic susceptibility.  While in antiferromagnetic materials the magnetic 
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moments of atoms that are related to the spins of electrons, align in opposite direction to each 

other due to direct exchange coupling.  Antiferromagnetic materials have zero net 

magnetization as the magnetic moments equal in magnitude are aligned in opposite directions.  

Ferrimagnetic materials magnetic moment is aligned antiparallel to each other as in 

antiferromagnetic materials but the moments are unequal in magnitude and spontaneous 

magnetization remains.  The substances behave like ferromagnetic materials.  Ferrimagnetism 

is exhibited by ferrites and magnetic oxides. 

Figure 3-5 represents the curve of the magnetization (alignment of the spins with 

magnetic field) versus the applied field curve, commonly known as the M-H curves of 

diamagnetic, paramagnetic, and ferromagnetic materials.  Diamagnetic materials show an 

inverse relation between the applied field and the magnetization because the spins oppose the 

direction of the applied field.  While a direct relationship between the applied field and the 

magnetization is seen for paramagnetic materials as their spins align with the field.  As the 

paramagnetic materials have short range magnetic ordering, no saturation magnetization (Ms) 

is observed.  Saturation magnetization (Ms) is described as the alignment of all the spins of the 

particles with the applied external magnetic field.  Consequently they have zero remnant 

magnetization (Mr) and zero corecivity (Hc).  Remnant magnetization (Mr) is the retention of 

magnetization in the absence of an applied magnetic field and zero coercivity (Hc) is defined as 

the intensity of the applied magnet field required to reduce the magnetization of that material to 

zero after the magnetization of the sample has been driven to saturation.  The M-H curves for 

ferromagnetic forms a hysteresis loop.  High magnetization saturation is reached in 

ferromagnetic materials as the magnetic domains align with the applied field.  Thus, 

ferromagnetic materials have a coercivity value higher than zero, because a certain amount of 
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energy is needed to randomize the highly aligned domains.   They also retain magnetization 

after the applied field is removed giving a positive remnant magnetization value. 

 

Figure 3-5: The expected plot of magnetization vs. applied field for diamagnetic, 

paramagnetic and ferromagnetic materials 
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3.6. Superparamagnetism 

In bulk ferromagnetic materials, when an external magnetic field is applied the 

magnetic moments exhibit multi domain properties, each domain presents a group in which all 

the atomic magnetic dipoles are spontaneously aligned.  These magnetic domains are separated 

by domain walls of ~100 nm width.  When the bulk magnetic materials are reduced to 

nanoscale the width of the domain walls also reduces.  Magnetic particles below a certain 

diameter cannot support more than one domain and are thus described as single-domain.
119

 

This diameter is termed as the critical diameter and is given by Eq. 3.1 

  
 
 

  
                                                                                                                                 3.1 

Where A is the exchange constant, MS is the moment per unit volume and for typical 

materials its value is 10–50 nm.
119

   At this size all the atomic magnetic moments are rigidly 

aligned as a single giant spin and the magnetic behavior of the particles is defined as 

superparamagnetism.
117,119,120

  When a high magnetic field is applied however, the spins align 

with each other resulting in saturation of the magnetic moment (similar to ferromagnetism), but 

when the magnetic field is removed, the magnetic moments undergoes magnetic relaxation 

(similar to paramagnetism).  The relaxation of the magnetization orientation of each particle is 

determined by Eq. 3.2 

    
      

                                                                                                          3.2  

Where τ is the relaxation time at one orientation, K is the particle’s anisotropy constant, 

Vis the particle volume, k is the Boltzmann’s constant, and T is the temperature. As the size of 

the particle decreases to a level where KV (free-energy barriers) becomes comparable to kT 
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(thermal energy), its magnetization starts to fluctuate from one orientation to another, leaving 

no coercivity and net magnetic moment.
119,121

  At this nanoscale the particle responds quickly 

to an external magnetic field to reach saturation magnetization, while dropping back to zero 

when the field is removed.   

This superparamagnetic property of the iron oxide nanoparticles makes them very 

attractive for potential applications in several fields, especially for biomedical applications 

such as enhanced  resolution magnetic resonance imaging (MRI), targeted drug delivery and 

imaging, hyperthermia, magneto-transfections, gene therapy, stem cell tracking, 

molecular/cellular tracking, magnetic separation technologies (e.g. rapid DNA sequencing), 

detection of liver and lymph node metastases.
122-124

  The focus of this research is on designing 

a dual modal imaging and therapeutic drug delivery system, so the role of superparamagnetic 

iron oxide nanoparticles as contrast agents in MRI and heating agents in hyperthermia will be 

discussed briefly in sections 3.3 and 3.4. 

3.7. Magnetic resonance imaging (MRI) application 

Magnetic resonance imaging (MRI) is a powerful tool for the diagnosis of disease and 

the study of biological processes such as cancer metastasis and inflammation.  MRI makes use 

of the property of nuclear magnetic resonance (NMR) to image hydrogen nuclei inside the 

body.  The MRI image is constructed because of the difference in the rates of equilibrium 

states of protons that are present in various environments (tissues).  The protons in water and 

tissue will align in a given direction (z-axis) when a static magnetic field is produced by the 

MRI magnets.   A radio frequency (RF) pulse at the resonance frequency (Larmor frequency) 

is applied to the aligned protons which flips the spin of the aligned protons in the body.  Once 
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the Rf pulse is removed the excited protons begin to relax back to their original spin states 

through longitudinal relaxation time (T1) or transverse relaxation time (T2).  The spin lattice or 

longitudinal relaxation time (T1) describes the rate that nuclear spins return to equilibrium and 

the spin–spin or transverse relaxation time (T2) is the time constant that describes the rate of 

signal decay.  The MRI signal is governed by the concentration of protons and the nuclear 

relaxation time, T1 and T2.
125

  The image contrast can be varied by adjusting the instrumental 

parameters of the imaging process or by taking advantage of the intrinsic parameters such as 

the local concentration of the hydrogen nuclei, relaxation parameters, and magnetic 

susceptibility.  Above all this the contrast of the image can be enhanced by intravenously 

injecting contrast agents.
126,127

  MRI contrast agents alter the relaxation times of the tissues and 

body cavities, and depending on the image weighting, it can give a higher or lower contrast 

signal.  Paramagnetic gadolinium (Gd) based particles are the most commonly used MRI 

contrast agents, which shows a strong T1 shortening effect.
128

  However they have relatively 

low contrast effects and a very short retention time in vivo.  Also the toxicity and 

biocompability of these Gd based contrast agents are not clearly known.
129

   

Superparamagnetic iron oxide (Fe3O4 and Fe2O3) nanoparticles are gaining much attention as 

MRI contrast agents. 
123,130,131

   Superparamagnetic iron oxide nanoparticles have high 

magnetic moment which can cause microscopic field inhomogeneity and can activate the 

dephasing of the protons.  This makes them effective in reducing the T2 relaxation time, and 

thereby leading to signal hypo- intensities in T2  or T2
*
 weighted images.  The image areas 

containing iron oxide nanoparticles therefore induce a signal darkening on the MRI 

images.
109,132

  The signal void due to the large magnetic susceptibility of the nanoparticles is 

much larger than the nanoparticle size, thus enhancing the detectability.  Designing these 
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nanoparticles with targeting specificity, the negative contrast alterations can be harnessed to 

report abnormal biological activity.   

3.8. Magnetic hyperthermia 

 Hyperthermia can be defined as controlled temperature elevation by targeting the 

heating field to the malignant tumors as well as the surrounding tissue, organ, part of body or 

even to the whole body.  The use of hyperthermia in the treatment of malignant tumors is well-

known since ancient times.  Hippocrates, the father of medicine had proposed that surface 

tumors can be treated by the application of hot iron.
133

  Hyperthermia is a promising form of 

cancer therapy alongside of the typical methods of surgery, chemotherapy and radiotherapy.  

Hyperthermia takes the advantage of the cancerous cells being more sensitive to higher 

temperatures in the ranged of 42-45º C than the healthy cells.  The tumor cells could be killed 

by necrosis if the temperature is above 45º C, or could it can help improve the efficiency of 

chemotherapy if the temperature is raised around 42º C.
134

 

Magnetic iron oxide nanoparticles act as mediators and help induce heat to the tumors.  

When these nanoparticles are exposed to an external alternating current (AC) magnetic field, 

some heat is generated due to magnetic hysteresis loss.  These losses, depending upon the 

thermal conductivity and heat capacity of the surrounding medium are dissipated in the form of 

heat; raising the temperature of the surrounding.  The amount of heat generated depends on the 

nature of the magnetic particles and the external field applied.  The heat dissipated by a 

magnetic nanoparticles subjected to an AC magnetic field is given by specific absorption rate 

(SAR), which is described as shown in Eq. 3.3.  SAR is expressed in W/g of nanoparticles. 

      
  

  
                                                                                                                3.3 
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Where C is the specific heat capacity of the sample and T and t are the temperature and 

time, respectively.
135,136

  SAR is very sensitive to the material properties.  In multi-domain 

particles the heat is generated mainly due to magnetic hysteresis loss, but it is different for 

small, single domain particles.  As the size is reduced the particles shows superparamagnetic 

behavior and would not exhibit hysteresis loss.   The two main contributing mechanisms of 

SAR in single domain superparamagnetic nanoparticles are the Néel relaxation and Brownian 

relaxation.  Néel relaxation is the random flipping of the spin without rotation of the 

nanoparticle and depends on the magnetic property of the nanoparticles. The Néel relaxation 

mechanism is analogous to the hysteresis loss in multi-domain magnetic particles whereby 

there is an internal friction due to the movement of the magnetic moment in an applied external 

magnetic field that results in heat generation.  In Néel relaxation the moment alignment occurs 

via the usual Stoner–Wohlfarth process subject to thermal activation where the relaxation time 

is given by Eq. 3.4. 

        
(
  

  
)
                                                                            3.4 

Where τN is the Néel relaxation time, τ0 is the average relaxation time in response to a 

thermal fluctuation and is typically in the order of a few nanoseconds, k is the Boltzmann 

constant, T is the temperature and ∆E is the energy. 

Brownian relaxation is the rotation of the entire nanoparticle within the fluid medium 

and depends on the viscosity of the medium as shown in Figure 3-6.
133,136,137

  In Brownian 

relaxation the moment can align with the field by physical rotation with a relaxation time given 

by Eq.3.5 

   
    

  
                                                                                                                 3.5 
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Where η is the viscosity coefficient of the fluid, k is the Boltzmann constant, VH is the 

hydrodynamic volume, T is the temperature, and τB is the Brownian relaxation time. 

 

Figure 3-6: Schematic representation of relaxations of magnetic particles either through 

spin rotation (Neel) or particle rotation (Brownian), when the particles are exposed to an 

AC magnetic field.  Néel relaxation is the random flipping of the spin without rotation of 

the nanoparticle while the Brownian relaxation is the entire rotation of the nanoparticle 

in the fluid. 
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Chapter 4. Poly (styrene-co-vinylbenzylchloride-co-divinylbenzene) 

(PSVBDVB) composites containing magnetic iron oxide 

nanoparticles 
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4.1. Overview 

Polymeric nanocomposites have evolved as a potential tool for the design of an ideal drug 

delivery system (DDS) for cancer treatments.  Both imaging and therapeutic agents can be 

encapsulated within the polymeric nanocomposites through various techniques as discussed in 

chapter 1.  In this project magnetic iron oxide nanoparticles have been used as a dual modal 

imaging (contrast agents for MRI) and therapeutic agent (heat mediators in hyperthermia), which 

are encapsulated into poly (styrene-co-vinylbenzylchloride-co-divinylbenzene) (PSVBDVB) 

polymer.
79

 

The key step in the design of a dual modal drug delivery system is the encapsulation of 

the magnetic iron oxide nanoparticles with polymer of choice.  A proper understanding of 

possible synthetic anomalies that arise from the inclusion of nanoparticles within the polymer 

during synthesis is necessary.  It is also very important to investigate the dilution effect of the 

saturation magnetization of the iron oxide nanoparticles due to the polymer coating.  Different 

types of polymer coating have been investigated and the choice of the appropriate one depends 

on many factors and principally on the clinical purposes of the functionalized nanoparticle. The 

most commonly polymer coating used for biocompatible iron oxide nanoparticles is derivatives 

of dextran.
138,139

  The association of dextran with iron oxide has led to its widespread use as a 

coating for iron oxide NPs for many decades.  However, either dextran or nanoparticles made 

with dextran can cause anaphylactic reactions.  Also the dextran coating is found to be 

biologically unstable and leads to sedimentation and aggregation of the iron oxide 

nanoparticles.
140

  Therefore it is desirable that the magnetic nanoparticles be efficiently 

encapsulated into a robust polymer. 
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To study these synthetic variations upon encapsulation with a polymer, the magnetic iron 

oxide nanoparticles were encapsulated into a robust poly (styrene-co-vinylbenzylchloride-co-

divinylbenzene) (PSVBDVB).
79

   PSVBDVB is a copolymer of styrene, vinylbenzylchloride 

(VB) and divinylbenzene (DVB) and their structures are shown in Figure 4-1.  Polystyrene 

copolymer is biocompatible, cheap, well-known, and can be easily functionalized by 

copolymerization.  Also the polymerization process for the synthesis of polystyrene is very well 

established.
141

  Furthermore the encapsulation of iron oxide nanoparticles within the polymer can 

be carried out by polymerization process, which ensures a homogenous distribution of the 

nanoparticles within the composites.   The cross linking agent divinylbenzene (DVB) was used 

to impart better mechanical strength to the polymeric composites, as compared to styrene alone.  

Vinylbenzylchloride (VB) confers a hydrophilic group to the composites which makes it possible 

for use in a wider range of applications like drug delivery, column separation technique.  The 

only difference to styrene is that VB contains chlorine to the para position to the vinyl group so it 

would not interfere in the polymerization process and good distribution of VB would be 

obtained.  Also addition of VB allows for the functionalization of the magnetic composites at the 

chlorine site through nucleophilic substitution reactions.     

 

Figure 4-1: Structure of styrene, vinylbenzylchloride (VB) and divinylbenzene (DVB) 
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4.2. Synthesis  

The first step in the synthesis of PSVBDVB composites containing the iron oxide 

nanoparticles is the synthesis of mono-dispersed iron oxide nanoparticles.  In order to prepare 

iron oxide nanoparticles with uniform size and shape, it is necessary to control the kinetics of 

their nucleation and growth.  The best control is achieved when the nucleation and growth steps 

are separated.  There are numerous methods of iron oxide nanoparticle synthesis such as co-

precipitation method, polyol technique, reverse micelles technique, sol gel technique, 

hydrothermal synthesis, chemical and physical vapor deposition, and pyrolysis.
114,142-144

  Polyol 

technique is a simpler synthetic technique that allows for the control over the nucleation and 

growth events and will be discussed in detail in section 4.2.1  

The next step is the synthesis of the PSVBDVB composites with iron oxide 

nanoparticles.  To properly understand the possible synthetic anomaly that arises from the 

inclusion of nanoparticles within the polymer during synthesis.  A homogenous polymer coating 

is desirable for magnetic nanoparticle encapsulation.  For this reason precipitation 

polymerization technique was employed for the formations of PSVBDVB composite, where in 

the polymeric composites are synthesized from its monomers.  PSVBDVB as discussed earlier is 

a copolymer of polystyrene.  Conventional methods for the synthesis of the copolymers are 

dispersion polymerization, suspension polymerization, and emulsion polymerization.  Mono-

dispersed sub-micron sized polymeric composites with a highly cross linked structure cannot be 

obtained by these processes.  Precipitation polymerization was thus utilized to synthesize highly 

cross linked polystyrene copolymers.
145,146

  It is a very simple and versatile polymerization 

technique yielding mono-dispersed spherical polymeric composites.  Precipitation 

polymerization will be discussed in detail in section 4.2.2 
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4.2.1. Synthesis of magnetic Iron oxide nanoparticles by Polyol technique 

Iron oxide nanoparticles were synthesized by polyol technique similar to those found in 

the literature.
115,147,148

  The polyol technique refers to the use of a polyalcohol (polyol) to reduce 

the metal precursor.  The polyalcohol used acts as a solvent as well as when coupled with a base 

serves as a mild reducing agent.
115

  In this technique, a solid inorganic precursor is suspended in 

a liquid polyol along with a base.  The suspension is stirred and heated to a given temperature, 

leading to super-saturation of the solution.  Consequently a short nucleation burst will occur 

followed by a slow growth of the metallic particles.
115

  The starting materials can range from 

metal hydroxides, nitrates, chlorides to acetates. The reduction of metal precursors can be 

achieved in various polyols such as ethylene glycol, propylene glycol, diethylene glycol, 

trimethylene glycol, butylene glycol, and trimethylene glycol.  The polyol technique produces 

finely dispersed, non-agglomerated metal nanoparticles with well-defined morphology, narrow 

size distribution and high crystallinity.  The main advantage of polyol technique over other 

synthetic routes is that the polyol solvent also act as a protective layer preventing particles 

aggregation and passivates the nanoparticles against oxidation. 

The synthesis of the iron oxide nanoparticles was carried out by polyol technique as 

shown in Figure 4-2.   0.40 g of Iron (II) acetate was slowly added to 25.00 mL ethylene glycol 

under magnetic stirring.  After the metal precursor was completely dissolved 1.00 g of sodium 

hydroxide (NaOH) was added and the reaction solution was quickly heated to reflux under 

magnetic stirring for 1 hour. The initial reddish-brown solution turned black at the end of 1 hour 

reflux.  The iron oxide nanoparticles were then magnetically extracted and further washed 

several times with methanol.  In order to prepare the particles for the polymerization coating 

process, two further washes and extractions were performed with anhydrous acetonitrile and 



www.manaraa.com

72 
 

sonication to remove any surface water, methanol, or glycol.  After the last acetonitrile wash, the 

particles were dried in a vacuum oven and kept under vacuum until further use. 

 

 

Figure 4-2: Synthesis of Iron oxide nanoparticles by Polyol technique 

4.2.2. Encapsulation of magnetic iron oxide nanoparticles with in the Poly (styrene-co- 

vinylbenzylchloride-co-divinylbenzene) (PSVDVB) composites 

Precipitation polymerization was carried out by similar methods used to produce poly 

(styrene-co-divinylbenzene) microspheres with the addition of vinylbenzylchloride in place of 

some styrene monomer.
141,149

  Precipitation polymerization technique is a heterogeneous 

polymerization process that starts with a homogeneous system in the continuous phase, where 

the monomers and initiator are completely soluble, but upon initiation the formed polymer is 
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insoluble and thus precipitates outs.
150

  During polymerization, the growing polymer chains 

phase-separate from the continuous medium by entropic precipitation as the cross-linking 

prevents polymer and solvent from freely mixing.
151

  The uniqueness of precipitation 

polymerization is the absence of polymeric stabilizer which is the key element in other 

polymerization processes.  The PSVBDVB composites containing iron oxide nanoparticles were 

synthesized as below. 

 Styrene and divinylbenzene (DVB) monomers were treated with 0.10 M sodium 

hydroxide solution to remove the inhibitor.   Vinylbenzylchloride (VB) and azobisisobutyronitril 

(AIBN) were used as received.  AIBN is used as an initiator for the polymerization process to 

start.  The polymer composites were synthesized with monomer percentages of 30% styrene, 

25% vinylbenzylchloride, and 45% divinylbenzene as shown in Figure 4-3.  The iron oxide 

nanoparticles were added to 1.00 mL of monomer solution at mass percentages of 0%, 1%, 3%, 

and 5%, which was then placed under sonication to achieve a homogeneous dispersion of the 

particles in the monomer solution.  The monomer solution or the particle/monomer solution was 

taken in a 250 mL round bottom flask equipped with a reflux condenser under N2 atmosphere, 

and then 50.00 mL of anhydrous acetonitrile was added as the solvent.  The reaction mixture was 

stirred mechanically at the rate of 60 rpm.  Then 20.00 mg of AIBN (initiator) was added to the 

reaction solution and the solution was heated to 75°C to initiate the polymerization process.  

Once the temperature was stabilized at 75°C, the reflux condenser was capped with a balloon to 

maintain the reaction under N2, and the reaction was allowed to age for 24 h.  The reaction was 

then quenched in “cold” methanol (~-20ºC) to precipitate the spherical polymeric composites. 

Vacuum filtration was employed for the polymeric composites without the magnetic 

nanoparticles and magnetic separation was employed for iron oxide nanoparticle loaded 



www.manaraa.com

74 
 

polymeric composite samples followed by further drying under vacuum to obtain the final 

product.  

 

Figure 4-3: Structure of Poly (styrene-co-vinylbebzylchloride-co-divinylbenzene) along 

with its monomer content 
 

4.3. Result and discussion 

The PSVDVB coated magnetic iron oxide nanoparticles were characterized using a 

variety of analytical techniques including scanning electron microscopy (SEM), thermal 

gravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample 

magnetometer (VSM). 
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Scanning electron microscopy (SEM) was performed on the polymeric composites, with 

and without the magnetic iron oxide nanoparticles loading.  The SEM samples were prepared by 

lightly sprinkling the composite powder on a conductive carbon tape mounted on the sample 

holder.  The sample was then sputtered with gold to make it conductive and reduce charging.  

The PSVBDVB composites without the iron oxide nanoparticle loading were spherical and 

mainly mono dispersed and had a mean diameter of 3 μm as seen in Figure 4-4 (a).  With 

addition of 1% iron oxide nanoparticles by mass a decrease in the size of the polymeric 

composites to a mean diameter of 2 μm was observed, as well as an increase in the poly-

dispersity of the composites was seen as shown in Figure 4-4 (b).  With further increase in the 

ratio of iron oxide nanoparticles the size of the polymeric composites decreases and poly-

dispersity of the composites increases.  The difference in these samples can be explained if the 

particles act as nucleation sites for the polymer chains.  In the case without particles, the number 

of polymer chains should be somewhat proportional to the amount of initiator.  Then with a 

uniform amount of chains being connected by cross-linker (DVB), uniformly sized composites 

are achieved.  When the nanoparticles are added, this gives a site for the monomers and forming 

polymer chains to orient or nucleate.  This causes the DVB cross-linking agent to be used more 

quickly because the polymer chains are closer together, especially since the DVB has been found 

to be more reactive than the styrene monomer in the typical polymer synthesis.
152

  It also uses 

more monomers around the surface of the nanoparticles due to their high surface area, thus 

shortening the overall length of the polymer.   
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Figure 4-4: (a) SEM image of as synthesized polymer beads without nanoparticle, (b) 1% 

by mass nanoparticle to polymer reaction 

 

Figure 4-5: Histograms of size measurements from SEM images of nanocomposites with 

varying nanoparticle loading percentages. 
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This trend in size reduction is seen to continue as more nanoparticles are added to the 

system.  The diameters of the spheres obtained are 3 ± 0.15 μm for 0% nanoparticles, 2 ± 0.30 

μm for 1%, 1 ±0.35 μm for 3%, and 0.5 ± 0.15 μm for 5%, and are shown in Figure 4-5.    

 

Figure 4-6: TGA plot showing decomposition profiles for the nanocomposites and polymer 

beads 

 

Thermal gravimetric analysis (TGA) was used to investigate the composition of the 

composites formed.  The PSVBDVB composites without the iron oxide nanoparticle loading 

show a major decomposition event around 350 ºC corresponding to the decomposition of the 

PSVBDVB copolymer.  As can be seen in Figure 4-6 the 0% loaded sample has a smooth 

decomposition profile with one primary decomposition temperature around 350 ºC.  As the 

nanoparticle loading is increased to 1%, the first major decomposition event is observed around 
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440º C which is indicative of higher levels of cross linking between the monomers or greater 

density copolymer formation.  There is also an addition decomposition event at around 720º C 

that is not present in the unloaded PSVBDVB composites and is attributed to the decomposition 

of the sample impurities on the surface of the iron oxide nanoparticles.    Increasing to 3% 

nanoparticles loading the decomposition profile is similar to 1%, with slight differences in the 

later decomposition event around 700º C again attributed to decomposition of sample inpurities 

on the surface of nanoparticles..  Then upon increasing to 5% loading, a third decomposition 

event is observed at around 500º C attributed to the decomposition of the high density 

PSVBDVB copolymer.  The increase in the decomposition temperature and the decomposition 

events is observed with increase in the nanoparticles loading.  As the nanoparticle loading 

increases, DVB is used up quickly as the nucleation sites increases. This causing a non-uniform 

composition polymer formation due to the rapid utilization of the monomers, which is evident 

from the difference in the decomposition profiles.   

The powder XRD pattern of the as-synthesized iron oxide nanoparticles shows an inverse 

spinel iron oxide phase with no impurities.   Figure 4-7 shows XRD patterns of the as-

synthesized iron oxide nanoparticles with an overlay of the data obtained from the JSPDS 

reference powder diffraction patterns of maghemite (α-Fe2O3).  By comparing the reference 

diffraction pattern to the collected data, it is clear that the raw data is a representation of 

maghemite.    The most intense peaks at 30.266º, 35.651º, 43.33º, 50.044 º, 53.766º, 57.319º, 

62.949º, 71.430º, 74.493º 2θ corresponds to the (220), (311), (400), (421), (422), (511), 

(440),(620), and (533) planes in the maghemite crystal structure.  The peaks were indexed by the 

JCPDS database for maghemite (p4332, card#01-089-5892) 
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Figure 4-7: XRD pattern of the as-synthesized iron oxide nanoparticles with an overlay of 

the data obtained from the JSPDS reference powder diffraction pattern of maghemite. 
 

Magnetic characterization was performed by vibrating sample magnetometer (VSM) to 

confirm that the composites synthesized were indeed magnetic and that the magnetization of iron 

oxide nanoparticles was retained post polymerization. Figure 4-8 shows a hysteresis plot of the 

as synthesized iron oxide nanoparticles and the composites with 5% nanoparticles loading, both 

measured at room temperature. As can be seen, the saturation magnetization of the iron oxide 

nanoparticles was 62 emu/g and is considered high since bulk maghemite has a magnetization 

saturation range of 80-100 emu/g.  The saturation magnetization of the iron oxide nanoparticles 
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after polymerization was 6 emu/g and the reduction in the saturation magnetization is due to the 

magnetic dilution due to the polymeric coating.   Utilizing the TGA data for mass correction of 

the polymer composite sample yielded a magnetization of 60 emu/g of iron oxide in the sample.  

This shows that the iron oxide nanoparticles remained unchanged during the polymerization 

process and no significant change is observed on the magnetization of the nanoparticles.  Both 

samples showed a coercivity of roughly 10 Oe at room temperature.   

 

Figure 4-8: Plot of magnetization vs applied field for the as synthesized iron oxide 

nanoparticles and the nanocomposite synthesized with 5% loading of the iron oxide 

nanoparticle 
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4.4.Conclusion 

These results discussed indicates that the iron oxide nanoparticles are not just 

incorporated into the polymer matrix but act as nucleation sites for the polymerization process to 

begin.  Although the polymerization process was found to have no effect on the magnetization of 

the nanoparticles, the nanoparticles had several effects on the resultant polymer composites size 

and morphology by decreasing the diameter, increasing the polydispersity, and decreasing the 

uniformity of the polymer composition.  These effects of nanoparticle loading reported give 

insight into parameters that may need to be adjusted in order to obtain similar polymer sizes, 

composition, and mechanical properties as nanoparticle loading is increased.   

The encapsulation of magnetic iron oxide nanoparticles in the PSVDVB polymer was 

achieved, but the magnetic PSVDVB composites cannot be utilized for drug delivery 

applications.  PSVDVB polymer is a non-biodegradable polymer.  The polymeric composites if 

introduced parenterally in the body will need to be surgically removed as the polymeric 

composites will not disintegrate within the body.
153

  Due to its non-biodegradability the 

PSVDVB composites are not suitable for drug delivery applications.  Thus, there is a need of a 

robust biocompatible and biodegradable polymer that can be used for biomedical purposes and 

will be discussed in chapter 5. 

But the PSVBDVB composites with iron oxide nanoparticles can be used for cell 

separations and as adsorbent for chromatography.
154-156

  These application of polymer coated 

iron oxide nanoparticles will be discussed in chapter 7. 
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Chapter 5. Poly (D, L-lactide-co-glycolide) microcomposite containing 

magnetic iron core nanoparticles as a drug carrier 
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5.1. Overview 

An appropriate selection of the polymer matrix is necessary in order to develop a 

successful drug delivery system.  The polymer can be non-biodegradable or biodegradable.  But 

as discussed earlier the major disadvantage with non-biodegradable polymers is that a surgery is 

required to harvest these polymers out of the body once they are depleted of the drug.  Hence, 

non-degradable polymers can be used only if removal of the implant is easy.
153

  On other hand 

biodegradable polymers either synthetic or natural, are capable of being cleaved into 

biocompatible byproducts through chemical or enzyme-catalyzed hydrolysis.
157,158

 This 

biodegradable property makes it possible to inject them into the body without the need of 

subsequent removal by the surgical operation.
153

  Drug delivery systems formulated with these 

polymers can be released in a controlled manner, by which the drug concentration in the target 

site is maintained within the therapeutic window.  Biodegradation of polymeric biomaterials 

involves cleavage of hydrolytically or enzymatically sensitive bonds in a polymer, leading to 

polymer erosion.   The erosion of the polymer matrix is usually classified into two categories: 

bulk (or homogeneous) erosion and surface (or heterogeneous) erosion.
159

  Bulk erosion occurs 

when the rate at which water penetrates into the polymer exceeds the rate at which the polymer is 

converted into water soluble materials (monomers), resulting in erosion.
160

  The size of the 

polymeric composites remains almost constant in bulk erosion.   While surface degradation 

occurs when the rate at which the polymer penetrates the device is slower than the rate of 

conversion of the polymer into water soluble materials as shown in Figure 5-1.
160

  The rate of 

degradation of biodegradable polymers is dependent on their hydrophilicity, and on the 

accessibility of their hydrolytic unstable bonds to water and to specific enzymes that can break 

these chemical bonds.  Consequently, the water uptake capability of the material, its 
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morphology, crystallinity, and molecular weight are key parameters that determine the 

degradation kinetics of the polymer. 

 

Figure 5-1: Schematic representation of bulk and surface erosion.  In bulk erosion the 

degradation takes place throughout the polymer surface, while surface erosion results in 

the thinning of the polymeric particle. 
 

5.1.1. Natural polymers 

Early research into biodegradable polymeric DDS was mainly focused on naturally 

occurring polymers like the proteins such as collagen, gelatin, and albumin and polysaccharides 

such as glucose, dextran, starch,  and chitosan.
161

  The chemical structures of naturally occurring 

polymers are shown in Figure 5-2.  The application of proteins for drug delivery has been limited 

due to their low mechanical stability and high cost.  On the contrary polysaccharides have 

attracted researchers as they are commercially available at low cost and can be modified by 

simple chemical reactions for specific applications.  Chitosan a type of polysaccharide has been 
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much researched as it has shown excellent biocompability, biodegradability, low 

immunogenicity and biological activity.  These naturally occurring polymers mostly undergo 

degradation through enzymatic bond cleavage.   

 

Figure 5-2: Chemical structures of naturally occurring biodegradable polymers 
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5.1.2. Synthetic polymers  

Recently the research focus into biodegradable polymeric DDS has shifted on to synthetic 

polymers as they offer the advantage of tailoring the degradation process.  For synthetic 

polymers, passive hydrolysis is the primary mode of degradation.  In case of degradation by 

hydrolysis, bulk degradation takes place and can be controlled by applying control over the rate 

of water penetration and material swelling, which is governed by the hydrophilicity of the 

polymer.
162,163

 Some of the synthetic polymer used for DDS are poly(ortho esters) (POE), 

polyanhydrides,  polyphosphazenes, and aliphatic polyesters.
161

   

 

Figure 5-3: Chemical structures of the four generations of poly(ortho)esters (POE) 
 

Poly(ortho)esters (POE) have evolved through four generation as biodegradable polymers 

and their structures are shown in Figure 5-3.
164

  However, only the third and fourth generations 
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POEs are semisolid and suitable for the manufacturing of a drug delivery system relevant for 

clinical use.  They are easy to manufacture and are characterized by faster degradation rates 

compared to polyesters.
165

  POEs have a degradation span of several days to several months.   

POEs undergo surface erosion because of high hydrophobicity and water impermeability.
165

  In 

POE composites the drug release and surface erosion of the polymer takes place simultaneously. 

Polyanhydrides have been investigated for short term drug release as they undergo rapid 

degradation in vivo and have poor mechanical properties.
166,167

  Their main advantage is that they 

contain the most reactive anhydride groups available for degradation.   Polyanhydrides are 

known to also undergo surface erosion and their degradation rate can be manipulated by varying 

the polymer composition.
168

  The main drawback of these polymers is that they need to be kept 

frozen under anhydrous conditions because of the dynamic hydrolysis of the anhydride bond.  

Polyanhydrides have a degradation spam of few days to few weeks. 

Polyphosphazenes are liner polymers composed of an inorganic backbone with nitrogen 

and phosphorous atoms.
169

  These polymers can be modified readily by manipulating either the 

backbone or the side chain, thus enabling the tuning of their degradation rate.  These polymers in 

presence of water cleave into nontoxic, low molecular weight products such as phosphates, and 

ammonia.  Polyphosphazenes can degrade by both bulk and surface erosion depending on the 

accessibility of the bonds and hydrophobicity of the polymer.
170

 

Aliphatic polyesters with hydrolysable backbones are promising candidates for control 

release DDS.  This class of polymers degrades via the hydrolytic cleavage of the ester bonds in 

their backbone.  While the role of enzymatic degradation for this class of polymers is not clearly 

understood.  Some of the widely used aliphatic polyesters are poly(lactide) (PLA), 

poly(glycolide) (PGA) and the copolymer of PLA and PGA- poly (lactide-co-glycolide) (PLGA) 
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and their structures are shown in Figure 5-4.  These polymers have been used in biomedical 

applications for more than 20 years and are known to be biodegradable, biocompatible and non-

toxic, and are approved by FDA (Food and Drug Administration) for human applications. 

 

Figure 5-4: Chemical structure of polyesters 

  

Poly(lactide)  and Poly(glycolide) are polymer formed by ring opening polymerization of 

lactic acid and glycolic acid respectively.
171

  They both belong to the α-hydroxy polymer family 

and degrade by the hydrolysis of the ester linkage to produce the respective monomers- lactic 

acid and glycolic acid.  Both of these polymers have been extensively researched as appropriate 

candidates for drug delivery matrixes.  PLA has three forms due to the presence of a chiral center 

D(-), L(+), and racemic (DL) forms.   PGA degrades easily as it is more hydrophilic in nature 

due to the absence of the methyl groups while on other hand PLA is found to be more robust in 

the body.
172

    PLA takes the longest to degrade biologically, with a biodegradation time of more 
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than two years while PGA biodegrades relatively quickly, in only two to three month.  Because 

these polymers vary differently in the biodegradation time, their copolymers can be synthesized 

with a wide-variety of degradation times, depending on the application. 

5.2. Poly (lactide-co-glycolide) (PLGA) 

Poly (lactide-co-glycolide) (PLGA) is a copolymer of lactide and glycolide, and is 

synthesized by random ring opening co-polymerization process.  Commonly used catalyst for the 

co-polymerization process are tin(II)2-ethylhexanoate, tin(II) alkoxides, and aluminium 

isopropoxide.  In the co-polymerization process the monomers- lactide and glycolide are linked 

together by ester linkage yielding a linear, amorphous PLGA polymer as shown in Figure 5-5. 

 

Figure 5-5: Ring opening co-polymerization process of lactide and glycolide in presence of 

catalyst to obtain PLGA 
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The forms of the PLGA are identified by the composition of the monomer used such as 

PLGA 50:50 or PLGA 75:25.  The degradation rate and the mechanical properties of the polymer 

can be influence by varying the monomer ratio (ratio of lactide: glycolide) and by controlling the 

monomer stereochemistry, molecular weight, and degree of polydispersity.   For example PLGA 

50:50 has the fastest degradation time of about 50-60 days and likewise PLGA 65:35, 75:25, 

80:20, and 90:10 have progressively longer degradation time.
173

  PLGA undergoes bulk 

degradation through random hydrolysis of the backbone ester linkage in presence of water to 

produce the original monomers.  The degraded monomers- lactic acid and glycolic acid are 

easily metabolized into the body via the Krebs cycle and are eliminated.
174

   Thus there is 

minimal systemic toxicity associated with using PLGA for biomedical applications. Also the 

original shape and mass of the polymer is preserved until 90% degradation has occurred.  The 

general properties and degradation rate of PLGA, PLA and PGA are summarized in Table 5-1. 

Polymer Crystallinity Tg (ºC) 
Degradation 

rate 

PGA 
Highly 

crystalline 
35-40 2-3 months 

PLLA 
Semi-

crystalline 
60-65 ˃ 2 years 

PDLLA Amorphous 55-60 12-16 months 

PLGA Amorphous 45-55 1-6 months 

 

Table 5-1: General properties of the polyester polymers- PGA, PLLA, PDLLA, PLGA and 

their respective degradation rates 
 

PLGA composites can be synthesized by various techniques such as emulsification 

solvent evaporation technique, salting out, spray drying, nano-precipitation techniques as 

discussed in chapter 1.  The emulsion solvent evaporation technique is the most frequently used 
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to produce polymeric composites.  This technique is simplest of all and encapsulation of the 

therapeutic and imaging agent can be carried out with ease.  The physical properties of obtained 

composites are strongly dependent on the nature of materials and also on the parameters during 

the manufacturing of the composites. 

This chapter focuses on the preparation of biodegradable and biocompatible PLGA 

composites for drug delivery applications.
78

  For this work the emulsion solvent evaporation 

technique was used to produce the PLGA composites containing the metallic iron nanoparticles 

and ruthenium dye as the drug analog.  The iron-iron oxide core shell nanoparticles (Fe@FeOx) 

were used as imaging and heating agents as discussed earlier.  Fe@FeOx core shell nanoparticles 

were used instead of iron oxide nanoparticles as they possess superior magnetic properties due to 

the formation of metallic iron core.  The Fe@FeOx core shell nanoparticles were synthesized by 

reverse micelle technique and will be discussed in synthetic section. 

5.3. Tris-(2,2'bipyridyl)dichlororuthenium (II) [Ru(bpy)3]
2+

 dye 

 

Figure 5-6: Chemical structure of Tris-(2,2'bipyridyl)dichlororuthenium (II) [Ru(bpy)] 
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Tris-(2,2'bipyridyl)dichlororuthenium (II) [Ru(bpy)3]
2+

 is a ruthenium based metal 

complex dye, and its structure is as shown in Figure 5-6.  It is a red crystalline salt obtained as a 

hexahydrate.  Ru(bpy) was used as the drug analog, as it is a fluorescent dye so its release from 

the polymeric composites can be easily monitored through fluorescence spectroscopy. In 

aqueous solution the [Ru(bpy)3]
2+

 cation has an excitation wavelength of 470 (±3) nm.  Due to 

the absorption of visible light by [Ru(bpy)3]
2+

 leads to the formation of the charge transfer 

excited state *[Ru(bpy)3]
2+

 as shown in Eq. 5-1 

[Ru(bpy)3]
2+ 

 + hv                        *[Ru(bpy)3]
2+

                                                               5-1                 

 The excited state has a life time of about 890 nano seconds and then relaxes back to the 

ground state by emission of photons at a wavelength of 610 nm as shown in Eq. 5-2. 

*[Ru(bpy)3]
2+

                        [Ru(bpy)3]
2+ 

 + hv’                                                              5-2   

However, if a quencher  is present, the excited state will decay to the ground state more rapidly 

due to the formation of electron transfer  complex.  The reaction can be shown as in Eq. 5-3.
175

   

*[Ru(bpy)3]
2+

 +  Q
(n)+

                       [Ru(bpy)3]
2+

 +  Q*                                                  5-3   

The excited *Ru(bpy)3 can act as both electron donor and electron acceptor species. A 

variety of inorganic and organic species such as metal ions, and oxygen can act as quenchers.
176

  

The efficiency of the electron transfer quenching is governed my factors such as distance 

between the donor and acceptor, degree of quantum mechanical coupling between the molecular 

orbitals of donor and acceptor as well as the free energy change (∆Gº) for the reaction.
177,178

   

 In this work the fluorescent Ru(bpy) dye was used  as drug analog to study its 

release from the PLGA composites  when irradiated with microwave radiation.  The Fe@FeOx 

nanoparticles quench the fluorescence of the Ru(bpy) dye through charge transfer quenching.  
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The Fe@FeOx nanoparticles and the Ru(bpy) dye are closely packed within the composites so 

the donor acceptor distance is reduced thus increasing the rate of charge transfer.  

5.4. Synthesis 

Iron-iron oxide core shell nanoparticles (Fe@FeOx) nanoparticles were synthesized by 

reverse micelle technique.  Before describing the reverse micelle synthetic technique a brief 

overview of the technique will be provided in section 5.3.1.  The PLGA composites with the 

Fe@FeOx nanoparticles and the dye were prepared by emulsion solvent evaporation technique 

and will be discussed in section 5.3.3.  PolyD,L-lactide-co-glycolide 50:50 i.v (PLGA) was 

obtained from Polysciences, Inc. Poly (vinyl alcohol) (PVA) 88% hydrolyzed with an average 

molecular weight of 88,000 and anhydrous dichloromethane (DCM) were purchased from Arcos 

organics.  Tris-(2,2'bipyridyl)dichlororuthenium (II) [Ru(bpy)3Cl2·6H2O] was purchased from 

Sigma Aldrich.  All chemicals were used as received without further purification 

5.4.1. Overview of Reverse micelle technique 

Reverse micelle technique has been utilized to synthesis the iron-iron oxide core shell 

nanoparticles.  The main advantage of this technique is that the size distribution can be improved 

even in room temperature reactions.  Normally if the reaction is carried out at room temperature, 

the nucleation and growth events compete greatly expanding the size distribution of 

nanoparticles synthesized.  It is also cost effective, fast reaction requiring simple equipment and 

it does not require temperature or pressure control.   The reverse micelles isolate reactants from 

one another, thereby better regulating the nucleation and growth at lower temperatures.  A proper 

understanding of the reverse micelle and the processes involved is essential. 
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Figure 5-7: Schematic representation of water in oil reverse micelle (right) and oil in water 

micelle (left) 

 

Micelles are formed when an oil phase, aqueous phase, and the surfactant are mixed in a 

proper proportion.  The surfactant is required to have an affinity for both the aqueous and oil 

phases, and it acts to provide the barrier between the primarily immiscible phases.  Micelles are 

formed when the concentration of the surfactant exceeds the critical micelles concentration 

(CMC) in water.  There are several types of surfactant used for reverse micelles that can be 

categorized into four groups: cationic, anionic, nonionic and zwitterionic.   In normal micelles 

the surfactant’s hydrophobic tail is directed toward the interior part and the hydrophilic head is 

directed towards the surrounding aqueous phase. Alternatively, in reverse micelles, the 

hydrophilic head of the surfactant is directed towards the interior of the micelles and the 

hydrophobic tail is directed to the oil phase.  Figure 5-7 shows the difference between normal 

micelles (left) and reverse micelles (right).  The reverse micelle droplets that are formed act as 

nano-reaction vessels in which the nanoparticles synthesis can be carried out.  The size of the 
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nanoparticles formed can be controlled by controlling the size of the formed reverse micelles.  

The reverse micelles can also exist as dimers for nanoseconds during which some exchange of 

materials between the micelles takes place allowing for sequential synthesis techniques.
179

  Also 

as the reverse micelle reaction takes place in aqueous media, so variety of chemical reactions 

such as oxidation- reduction, co-precipitation, and substitution reaction can be easily carried 

out.
114

   

5.4.2.Iron-iron oxide (Fe@FeOx) core shell nanoparticles synthesis via reverse micelle 

Iron-iron oxide (Fe@FeOx) core shell nanoparticles were synthesized via reverse micelle 

techniques under nitrogen using Schlenk line techniques as found in the literature.
180,181

   The 

surfactants used for this synthesis were nonylphenoxy poly(ethyleneoxy)ethanols with differing 

head group repeating units of 9 and 5 as surfactant and co-surfactant (NP9/NP5) sold by Rhodia 

Incorporated under the name Igepal CO-520 and CO-630 as shown in Figure 5-8.  Cyclohexane 

was used as the solvent. 

 

Figure 5-8: Nonylphenoxypoly(ethyleneoxy)ethanols abbreviated as (NP). The “n” 

represents the number of the ethylenoxy repeating units. 
 

 Surfactant solutions were prepared by dissolving 6.85 g of NP5 and 20.57 g of NP9 in 

123.23 mL of cyclohexane.  In a typical reverse micelle reaction two surfactant solutions are 

required.  The first solution is place into a 1000 mL three necked round bottom flask under 
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magnetic stirring.  The surfactant solution is degassed for about 20 minutes with nitrogen (N2) 

utilizing the schlenk line technique.  Aqueous metal solutions were prepared by dissolving 0.95 g 

of FeCl2.4H2O in 6.85 mL of water and 0.57 g of NiCl2.4H2O in 6.85 mL of water.  The other 

surfactant solution was stirred vigorously while slowly adding the Ni
2+

 solution.  Once the 

solution formed micelles and became clear, it was placed in an addition funnel above the round 

bottom flask and degassed in the same manner.   

Next the aqueous Fe
2+

 solution was added to the first surfactant solution and degassed for 

5 minutes.   The colorless surfactant solution presented in the reaction vessel turned pale green 

upon the addition of Fe
2+

 solution.  At this point the reverse micelles start to form around the 

aqueous Fe
2+

 solution.  Then 0.36 g of NaBH4 was added to the flask and allowed to react for 

20 minutes, at the end of which the micelle solution in the addition funnel containing the Ni
2+

 

was added to the reaction for 5 minutes.  The addition of second surfactant containing Ni
2+

 aids 

in the formation of the FeOx shell and passivation of the nanoparticles against further oxidation.  

The reaction was quenched by the addition of 100 mL of chloroform and 100 mL of methanol 

and subsequently washed with methanol to remove excess surfactant and cyclohexane, and then, 

the resultant particles were collected in methanol by magnetic separation.  After washing was 

complete the remaining methanol was decanted and the particles were dried in a vacuum 

desiccator.  As shown in the Figure 5-9, the as synthesized Fe@FeOx core shell nanoparticles 

were dispersed in 0.50 M sodium hydroxide (NaOH) solution and then treated with equivalent 

grams of sorbitol and were sonicated for 4 hours.  The Fe@FeOx nanoparticles were first coated 

with sorbitol to provide a negatively charged particle surface for the Ru(bpy) dye adhere to the 

particle surface.  The sorbitol treated nanoparticles were then magnetically separated and 50.00 

mg of Ru(bpy) dye in 2 mL of water was added.   The nanoparticle dye mixture was further 
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sonicated for 4 hours and freeze dried to obtain the nanoparticle dye mixture.  The next step is 

the encapsulation of this nanoparticle dye mixture by PLGA polymer.  The encapsulation was 

achieved by emulsification solvent evaporation technique as discussed in chapter 1. 

 

Figure 5-9: Schematic representation of the Fe@FeOx nanoparticle and Ru(bpy) dye 

mixture 
 

5.4.3. Overview of Emulsification solvent evaporation technique  

The encapsulation of the Fe@FeOx nanoparticles and Ru(bpy) dye by PLGA polymer 

was achieved by emulsification solvent evaporation technique.   Emulsification is a process of 

dispersing two immiscible liquids.   For emulsion solvent evaporation there are basically two 

systems to choose: oil-in-water (o/w) and water-in-oil (w/o).  The o/w systems are widely used 

compared to w/o systems due to the simplicity of the process and easy clean up requirements for 

obtaining the final polymeric particles.  In this process the active agents should be hydrophobic 

and a water immiscible solvent should be used.  In this research work the oil-in-water emulsion 

solvent evaporation technique was used to obtain PLGA composites containing Fe@FeOx 

nanoparticles and the Ru(bpy) dye. Dichloromethane (DCM) is the most commonly used water 

immiscible solvent for preparation of PLGA particles. 

The oil-in-water emulsification solvent evaporation technique consists of four major 

steps.  First step is the dissolution of the active agent in an organic solvent (dichloromethane) 

containing the polymer.  Second step is the emulsification of this organic phase, called dispersed 
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phase, in an aqueous phase called continuous phase followed by extraction of the solvent from 

the dispersed phase by the continuous phase, accompanied by solvent evaporation, transforming 

droplets of dispersed phase into solid particles.  The final step is the recovery and drying of 

composites to eliminate the residual solvent. 

5.4.4.  Preparation of PLGA composites containing Fe@FeOx nanoparticle and Ru(bpy) 

dye mixture 

Figure 5-10 shows the schematic representation of the o/w emulsion solvent evaporation 

technique used to prepare the PLGA composites.   The polymer solution was formed by 

dissolving 2 wt% of PLGA in dichloromethane (DCM).  The organic phase was formed by 

combining 50.00 mg of the nanoparticle-dye mixture and 3 mL of PLGA solution. This organic 

phase was sonicated for 5 minutes to achieve uniform dispersion.  This organic phase was then 

added to 50 mL of aqueous phase containing 3% w/v poly(vinyl alcohol) (PVA) as the stabilizer, 

to form the oil-in-water emulsion. PVA helps to reduce the surface tension of continuous phase, 

avoids the coalescence and agglomeration of the emulsion droplets formed and stabilizes the 

emulsion.  The emulsion was homogenized with Ultra Turrax IKA T-18 basic homogenizer at 

22,000 rpm for 5 minutes.  After that 100 mL distilled water was added to the oil-in-water 

emulsion, which dilutes the organic solvent concentration in water and leads to the hardening of 

the composites.  The solution was stirred overnight to evaporate the organic solvent (DCM) and 

then freeze dried.  The loading efficiency of the iron core nanoparticles and the thickness of the 

PLGA coating can be controlled by varying the ratios of PLGA, iron nanoparticles, and the 

fluorescent dye.  All characterization and evaluation studies described below were done utilizing 

the freeze dried PLGA composites. 
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Figure 5-10: Schematic representation of oil-in-water (o/w) emulsion solvent evaporation 

technique utilized for the encapsulation of the Fe@FeOx nanoparticles and Ru(bpy) dye 

into PLGA polymer 

 

The size distribution and the morphology of the prepared PLGA composites were 

determined using a scanning electron microscope (SEM) with a Zeiss EVO 50 (Carl Zeiss, Inc.).  

The core-shell morphology and size of the nanoparticles were determined by transmission 

electron microscope (TEM) with a Joel JEM-1230 (Joel Ltd.).   The loading efficiency of the 

iron nanoparticles and the dye, and the release rate of the dye were determined by fluorescence 

spectroscopy and thermogravimetric analysis (TGA) 
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5.5. Results and discussion 

The size and morphology of the as synthesized Fe@FeOx core shell nanoparticles was 

confirmed by transmission electron microscopy (TEM).  The TEM sample was prepared by re-

dispersing the Fe@FeOx nanoparticles in methanol, and then applied to a 300 mesh copper TEM 

grid with a carbon film.  Figure 5-11 shows the TEM image of the Fe@FeOx core shell 

nanoparticles.  A well-defined core shell nanostructures with a size distribution in the range of 10 

to 15 nm is observed.  The inner dark centers represent the metallic iron core and the outer light 

color rings represent the iron oxide shell.  These results confirm the core shell morphology of the 

synthesized Fe@FeOx nanoparticles. 

 

Figure 5-11: Transmission electron microscopy (TEM) image of Fe@FeOx core shell 

nanoparticles synthesized by reverse micelle technique. 
 

20nm 
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Scanning electron microscopy (SEM) was performed to determine the size distribution 

and the morphology of the prepared polymeric composites.  The freeze dried PLGA composites 

were re-suspended in water with sonication, mounted onto a carbon conductive tab (Ted Pella, 

Inc., Redding, CA, USA), and dried at room temperature overnight.  The sample was sputter 

coated with gold plasma prior to SEM imaging.   Figure 5-12 shows the SEM image of the 

magnetic PLGA composites, which are roughly around 200 nm–1.5 μm in size and show fairly 

spherical structure.  The size distribution of the composites is attributed to the oil-in-water 

droplet formation and the solvent evaporation from the polymer solvent interface.  In general, 

longer homogenization times and higher speed of the homogenizer produces higher shear 

induced by the homogenizer blade, thus, leading to smaller particle size.  Too much loading of 

the Ru(bpy) dye and the nanoparticles leads to the loss of morphological control and the 

composites turn into irregular shapes as seen in the Figure 5-12.  The most likely explanation to 

this would be that the Ru(bpy) dye could precipitate in due to lack of water during the Fe@FeOx 

nanoparticle-Ru(bpy) dye mixture formation.  The particle size of the precipitated dye could be 

bigger than the oil-in-water bubbles formed.  Thus disturbing the droplet formation and leading 

to smear formation.  The other speculation is that as the dye content is increased in the organic 

phase, more dye is likely to get solubilize into the aqueous phase as Ru(bpy) is a water soluble 

dye.  This leads to the disturbance in the formation of the droplet. 
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Figure 5-12: Scanning electron microscopy (SEM) image of the magnetic PLGA composites 
 

The loading efficiency of the prepared magnetic PLGA composites was determined using 

Thermogravimetric analysis (TGA) and fluorescence spectroscopy.  5 mg of the PLGA 

composite were dissolved in DCM; PLGA is soluble in DCM while the Fe@FeOx nanoparticles 

and the Ru(bpy) dye fall out in the organic solution.  To this DCM solution a known volume of 

water was added to extract the water soluble Ru(bpy) dye.  Fluorescence measurements were 

performed on the aqueous layer to determine the Ru(bpy) dye content in 5 mg of the composites. 

Fluorescence intensity of known concentration of Ru(bpy) dye was measured and a linear curve 

fit was performed which yields around 0.25% w/w fluorescent Ru(bpy) dye loading in the 

composites as shown in Figure 5-13.  Attempts were made to improve the loading efficiency of 
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the dye but it leads to the loss of the spherical morphology of the composites, as discussed 

earlier.   

 

Figure 5-13: Linear regression plot yielding a 0.25% w/w Ru(bpy) loading into the PLGA 

composites 
 

TGA results also confirmed 0.25% w/w Ru(bpy) dye loading and shows approximately 

50% w/w Fe@FeOx nanoparticles loading in the composite as shown in Figure 5-14.  The 

decomposition of PLGA polymer by itself occurs at around 200 ºC, but the PLGA composites 

start to degrade at around 160 ºC.  The PLGA polymer is in a form of amorphous bead but when 
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the PLGA composites are formed the polymer was dissolved in DCM and re-precipitated out.  

This causes an increase in the atacticity of the polymer.  Two decomposition events around 380 

ºC and 450 ºC are observed for Ru(bpy) corresponding to the decomposition of the bipyridyl 

rings.  The PLGA composites shows a small decomposition event around 400 ºC corresponding 

to Ru(bpy) dye indicating a trivial amount of the dye.  The Ru(bpy) dye loading obtained is very 

less and can be attributed to the loss of the water soluble Ru(bpy) dye during the emulsification 

process.  The Fe@FeOx nanoparticles do not undergo any decomposition till 600 ºC thus 

yielding a loading of around 50% in the composite. 

 

Figure 5-14: TGA plot showing the decomposition profile of PLGA composites containing 

Fe@FeOx nanoparticles and Ru(bpy) dye, PLGA and Ru(bpy) dye by itself 
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5.6. Ru(bpy) dye release studies 

Fluorescence spectroscopy was performed to study the release kinetics of the Ru(bpy) 

dye from the PLGA composites. Ru(bpy) dye is a fluorescent dye with excitation wavelength of 

470 nm and emission wavelength around 610 nm.  Therefore, the PLGA composites were 

excited at 470 nm using Cary Eclipse Fluorescence Spectrophotometer equipped with a xenon 

lamp.  As the dye is released from the composite, the fluorescence intensity decreases due to the 

quenching of the Ru(bpy) dye by the Fe@FeOx nanoparticles as discussed earlier, thus allowing 

for the determination of the release kinetics of the dye as a function of temperature.  The PLGA 

composites were dispersed in water and heated with 2.45 GHz microwave radiations by 

irradiating with a pulse of 1 second duration each utilizing a commercial microwave unit.  The 

microwave radiations heats up the magnetic nanoparticles by magnetic hyperthermia principle as 

discussed. 

 

Figure 5-15: Physical mechanism at each frequency range of electromagnetic spectrum 

range 
 

Electromagnetic (EM) radiation can be classified into ionizing radiation and non-ionizing 

radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds as 

shown in the Figure 5-15. Non-ionizing EM radiations propagate within biological tissues with 
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reduced velocities, and are refracted, diffracted and reflected when encountering in-

homogeneities within tissues.   For heat generation the non-ionizing radiations of the EM 

spectrum are widely used by diversified system configurations.  Microwave radiations are widely 

used EM radiation to generate heat within the body. Microwaves are defined as the region of the 

non-ionizing spectrum from 300 MHz to 30 GHz.   Microwaves interact with biological systems 

by way of ionic conduction and rotation of polar molecules of water.  Microwave energy is 

generated by a magnetron, and transmitted either directly or by means of a waveguide.  The 

Federal Communications Commissions for industrial, scientific, and medical applications has 

allotted the 0.955 and 2.450 GHz frequency bands for hyperthermia applications.
182

    In the 

0.915 GHz band, resistive heating is achieved by collision of the freely moving ions within the 

body while at the 2.45 GHz frequency bands heat is generated but to the dielectric heating of 

water and fats within the body.  Due to this microwave energy leads to overheating of the fatty 

tissues.  Despite these problematic overheating, microwaves are still among the mainstream 

hyperthermia applications due to several appealing experimental and clinical results.  Also the 

overheating can be controlled by maintaining the exposure time of the microwave radiations as 

defined by the International Commission on Non-Ionizing Radiation Protection (ICNRP)
183,184
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Figure 5-16: Plot of fluorescence intensity vs time. The horizontal lines shows the 

fluorescent intensity at room temperature 22 °C, 30, 40, and 50 °C temperature as 

measured by fluorescence spectrometer. 
 

The magnetic nanoparticles when irradiated with the microwave radiations produce heat 

by magnetic hyperthermia principle as discussed earlier.  The 2.45 GHz frequency with 1 second 

pulse was used for the in-vitro experiments and past studies have shown that few seconds’ 

exposure to the microwave radiations does not have any major effect on the healthy tissue.
185,186

 

To achieve uniform heating of the composite sample and water as the reference, the turntable 

within the microwave unit was removed and the composite sample and water were heated from 

one to five times with a pulse of 1 second duration each.  The iron nanoparticles encapsulated 

within the composite absorb the microwaves and heats up providing local heating.  The PLGA 
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polymer swells up due to the heat produced leading to the release of the dye through the erosion 

of the polymer.  The bulk water temperature of the composite sample as well as the reference 

reached up to 32 °C after irradiating the sample five times with a pulse of 1 second duration 

each.  Fluorescent measurements were carried out after irradiating the sample for one to five 

times with 1 second pulse each, as well as heating the sample to 30, 40, and 50 °C.  The sample 

was just heated five times as further heating leads to drastic increase in the temperature of the 

sample.  Figure 5-16 shows the plot of the fluorescence intensity with time of irradiation of the 

sample by the microwaves and externally heating the sample at 30, 40, and 50 °C.  It can be seen 

that the rate of release of the dye at 2 seconds is equal to that of 30 °C and the 4 seconds 

irradiation release equals to 40 °C.  

5.7. Conclusion 

Successful encapsulate the drug analog Ru(bpy) dye and magnetic Fe@FeOx 

nanoparticles into the PLGA composites was achieved by oil-in-water emulsion solvent 

evaporation technique.   The local heating of the PLGA composites was also achieved by 

irradiating the Fe@FeOx nanoparticles with 2.45 GHz microwave radiations.  The release of the 

Ru(bpy) dye from the PLGA composites after microwave irradiation was successfully achieved.  

Also higher Ru(bpy) dye release from the composites by locally heating the sample with 2.45 

GHz microwave pulse compared to externally heating the composite sample was demonstrated. 

Fe
2+

and Fe
3+

 ions acts as a very good quencher for the fluorescent Ru(bpy) dye, which is 

observed with the decrease in the fluorescence intensity of the released dye at 610 nm when the 

temperature is increased externally or by irradiating the sample five times with 1 second pulse 

each from a 2.45 GHz commercial microwave unit.  The composite sample when irradiated with 

microwaves or externally heated at 30, 40 or 50 ˚C, the sorbitol layer on the nanoparticles 
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decomposes at that temperature.  The sorbitol was used to provide a barrier between the iron 

oxide nanoparticles and the Ru(bpy) dye so that they do not come in contact with each other 

leading to dynamic quenching of the Ru(bpy) dye.  The quenching of the Ru(bpy) dye by the 

iron oxide nanoparticles is observed when the composites are irradiated or heated externally.  As 

a result a systematic study of the quenching process of the ruthenium dye needs to be done.   To 

clearly understand the quenching process of the Ru(bpy) dye in-situ measurements of the dye 

release need to be done.  For this reasons Radio frequency (Rf) radiations were used instead of 

2.45 GHz microwave radiations to generate heat from the magnetic iron nanoparticles by 

magnetic hyperthermia principles.  It is easier to mount an Rf frequency coil on the sample 

carrying out simultaneous heating and fluorescent measurements.  Also a bench top fluorescence 

spectrometer equipped with 530 nm laser source was used to carry out in-situ measurements.  An 

Rf frequency coil was mounted on the sample and then fluorescence measurements are carried 

out.    A detailed explanation of the experimental set up and the results obtained will be given in 

chapter 6. 
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Chapter 6. Ferrofluid based drug delivery system with dual modal imaging 

and therapeutic applications 
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6.1. Overview 

As discussed earlier a drug delivery system made up of biodegradable and biocompatible 

PLGA polymeric composites containing the Fe@FeOx nanoparticles and the drug analog has 

been successfully designed.  But as seen in the previous results the PLGA composites 

synthesized were poly-dispersed with a wide size distribution of around 200 nm–1.5 μm.  For in-

vitro applications mono-dispersed PLGA composites with higher dye loading efficiency are 

desirable.  To obtain mono-dispersed PLGA composites, the magnetic Fe@FeOx nanoparticles 

need to be dispersed in either organic or aqueous medium.   The PLGA composites earlier 

synthesized in chapter 5 were prepared by oil-in-water (o/w) emulsion technique.  The basic 

principle of this technique is that both polymer and the active agents to be encapsulated need to 

be dispersed/ dissolved into the organic phase (DCM), and the resultant organic phase is 

emulsified into the water phase containing the emulsifier of choice.  In the earlier case when 

Fe@FeOx nanoparticle-Ru(bpy) dye mixture was encapsulated into the PLGA polymer, the 

nanoparticle-dye mixture did not form a stable disperse into DCM.  So it was a solid-in-oil-in-

water (s/o/w) emulsion, in which a solid is dispersed into the organic phase which is then 

emulsified in the aqueous phase.
187

  But the s/o/w technique has certain drawbacks such as 

formation of poly-dispersed composites and increase in the burst release of the active agent.  In 

s/o/w technique very low and uniform particle size of the active agent is required for the 

complete encapsulation.
188

    Therefore the poly-dispersed in the PLGA composites could have 

come from the poly-dispersed Fe@FeOx nanoparticle-Ru(bpy) dye mixture.  To overcome this 

problem the nanoparticle-dye mixture needs to be dispersed into the organic phase.  The Ru(bpy) 

dye is soluble in the aqueous as well as organic phase but the Fe@FeOx nanoparticles do not 

disperse into organic as well as the aqueous phase.  So, it is essential to obtain a stable dispersion 
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of the magnetic nanoparticles into the desired solvent.  This can be achieved by using a ferrofluid 

instead of the iron nanoparticles.  

This chapter first describes the synthesis of the chloroform based ferrofluid by 

thermolysis technique followed by its characterization.  The next step is the preparation of the 

PLGA composites utilizing the synthesized ferrofluid and the drug analog by oil-in-water 

emulsion solvent evaporation technique.  The PLGA composites were further functionalized with 

folic acid for targeted delivery.  The functionalization of the PLGA was achieved utilizing 

carbodiimide chemistry and will be discussed in detail in section 6.4.  The release of the drug 

analog from the functionalized PLGA composites was studied by fluorescence spectroscopy 

while placing the sample in a radio frequency (Rf) induction coil.  The PLGA composites were 

also investigated by magnetic resonance relaxivity measurements for its application in MRI 

6.2. Ferrofluid 

Ferrofluids are stable colloidal suspensions of nanoscale magnetic particles into a carrier 

fluid, usually organic solvent or water.
148,189

  The magnetic nanoparticles have an average 

particle size of about 10 nm that are suspended by Brownian motion and do not settle out, even 

when exposed to a strong magnetic, or gravitational field.  The magnetic nanoparticles are 

mainly nanoscale magnetite or maghemite. In the absence of a magnetic field, the magnetic 

moments of the nanoparticles are randomly distributed and the ferrofluid has no net 

magnetization.  But when a magnetic field is applied to a ferrofluid, the magnetic moments of the 

nanoparticles orient along the field lines almost instantly. The magnetization of the ferrofluid 

responds immediately to the changes in the applied magnetic field and when the applied field is 

removed, the moments randomize quickly. 
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 The magnetic nanoparticles of the ferrofluid are coated with a stabilizing dispersing 

agent that prevents the particle agglomeration even when a strong magnetic field is applied to the 

ferrofluid.  These stabilizers prevent the nanoparticles from clumping together, ensuring that the 

particles do not form aggregates that become too heavy to be held in suspension by Brownian 

motion.  There are two main types of stabilizers used for dispersing magnetic nanoparticles such 

as the surfactant stabilized nanoparticles and ionically stabilized nanoparticles.  

Tetramethylammonium hydroxide is the most commonly used ionic stabilizer for polar solvents 

based ferrofluid.  The positively charged tetramethylammonium hydroxide [N(CH3)4
+
] cation 

forms a diffuse shell around the negatively charged nanoparticle surface, inducing electrostatic 

repulsion between the neighboring particles.  For non-polar solvents based ferrofluid, surfactants 

are used to coat the nanoparticle surface that induces steric repulsion on the neighboring 

nanoparticles.  The most commonly used surfactants are oleic acid, citric acid, and soy lecithin.  

A surfactant has a polar head which adsorbs to a nanoparticle and non-polar tail that sticks out 

into the carrier medium preventing the agglomeration of the nanoparticles.  The stability of the 

ferrofluid is influenced by several parameters such as an optimum size range of the 

nanoparticles, viscosity of the carrier liquid, length of the surfactant, temperature, and magnetic 

field strength.  Various techniques have been shown to produce magnetic nanoparticles such as 

wet grinding, co-precipitation, micro-emulsion, and thermal decomposition of metal salts 

(thermolysis).
189-191

  After the synthesis of the nanoparticles, additional steps are typically 

required to coat them with the appropriate stabilizer. 

6.2.1. Synthesis 

Thermolysis is a synthetic technique where in the nanoparticles are synthesized by 

thermally decomposing the metal precursor in high boiling organic solvents containing 
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stabilizing surfactant.
192,193

  Mono-dispersed nanoparticles can be achieved through thermolysis 

technique.  Furthermore, utilizing this technique the surfactant coating of the nanoparticle can be 

achieved in a single step process. 

 

Figure 6-1: Synthetic scheme for the design of the chloroform based ferrofluid 
 

 

Figure 6-2: Schematic representation of the magnetic nanoparticles coated with sodium 

oleate in the ferrofluid.  The sodium oleate chains induces steric repulsion on the 

neighboring particles preventing the agglomeration 
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Chloroform based ferrofluid was synthesized by thermolysis technique under ambient 

conditions.  1.00 g of iron (II) chloride tetrahydrate (FeCl2.4H2O) and 2.50 g of sodium oleate 

are placed in a 100 mL one neck round bottom flask.  Sodium oleate is used here as a surfactant 

to coat the magnetic nanoparticles as shown in Figure 6-2.  The sodium oleate induces steric 

repulsion between the neighboring nanoparticles thus preventing agglomeration.   Then 25 mL of 

n-butanol is slowly added to the flask under magnetic stirring.  The reaction solution is quickly 

heated to reflux conditions for an hour.  During which the reaction solution undergoes a color 

change from dark orange to grey and finally to jet black at the end of 1 hour reflux.   After an 

hour the reaction solution was allowed to cool to room temperature and quenched with the 

addition of 100 mL methanol.  Throughout the reaction the particles did not seem to stick to the 

magnetic stirrer during the reaction.  The nanoparticles are magnetically extracted and further 

washed several times with methanol.  The methanol washing step is necessary to remove any 

excess of the sodium oleate surfactant.  To prepare the chloroform based ferrofluid, the 

nanoparticles were taken in a vial and chloroform was slowly added under sonication.  The 

colloidal stability of the prepared ferrofluid was checked with a rare earth magnet.  The resulting 

ferrofluid is stable for over six months without visual degradation.   

The next step is the preparation of the PLGA composites utilizing the ferrofluid and the 

drug analog.  In previous work Ru(bpy) dye was used as the drug analog, but the loading 

efficiency was too low  around 0.25%.  Another dye Rose Bengal was used but it also suffered 

from the same problem of poor loading.  Both Ru(bpy) and Rose bengal are water soluble and 

leached out during the emulsification process leading to poor encapsulation efficiency.  

Moreover most of the anticancer drugs are water insoluble so we need a water insoluble drug 

analog. Rhodamine B base is a sparingly soluble in water.    Rhodamine B base is a fluorescent 
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dye belonging to the family of fluorone dyes and its structure is as shown in Figure 6-3.  

Rhodamine B base has and excitation wavelength around 540 ± 2 nm and emission wavelength 

around 580 ±2 nm.  Rhodamine B base also undergoes dynamic quenching by Fe
2+

and Fe
3+

 ions 

through excited state charge transfer mechanism. 
176,194

 

 

Figure 6-3: Chemical structure of Rhodamine B base dye 

 

6.3. Preparation of the PLGA composites containing the Ferrofluid and Rhodamine 

B dye 

The PLGA composites containing the ferrofluid and Rhodamine B base dye were 

synthesized by oil-in-water emulsion solvent evaporation technique as discussed earlier with a 

slight modification.  In the previous work the first step was the preparation of the nanoparticle-

dye mixture. But it is know that the metal ions quench the dye through excited state charge 

transfer mechanism. The efficiency of the quenching depends on the distance between the donor 

and the acceptor species.
177

  So, if the distance between the donor and acceptor species is 

increased the quenching process can be restricted.   
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Figure 6-4: Schematic representation of modified oil-in-water (o/w) emulsion solvent 

evaporation technique utilized for the encapsulation of the ferrofluid and Rhodamine B 

base dye into PLGA polymer 
 

Figure 6-4 represents the schematic representation of the synthetic scheme for preparing 

the PLGA composites.  Firstly the polymer solution was formed by dissolving 200.00 mg of 

PLGA in 3 mL of dichloromethane (DCM).  This polymer solution was divided into half.  To the 

first half 1 mL of chloroform based ferrofluid was added while 20.00 mg of the Rhodamine B 

dye was added to the other half polymer solution.  Both the ferrofluid and the dye containing 

solutions were sonicated for 5 minutes to achieve uniform mixing.  The two polymer solutions 

were then mixed together to form the organic phase.  This organic phase was then added to 50 

mL of aqueous phase containing 2% w/v poly(vinyl alcohol) (PVA) as the stabilizer, to form the 

oil-in-water emulsion. PVA helps to reduce the surface tension of continuous phase (aqueous 



www.manaraa.com

118 
 

phase), avoids the coalescence and agglomeration of the emulsion droplets formed and stabilizes 

the emulsion.  The emulsion was homogenized with Ultra Turrax IKA T-18 basic homogenizer 

at 60,000 rpm for 1 minute.  After that 50 mL of 0.25% w/v PVA solution was added to the oil-

in-water emulsion and further homogenized at 40,000 rpm for another minute.  This dilutes the 

organic solvent concentration in water and leads to the hardening of the composites.  The 

solution was stirred for 4 hours to evaporate the organic solvent and then freeze dried.  PLGA 

composites containing just the dye as well as the ferrofluid were also synthesized by the same 

procedure as controls.  The prepared PLGA composites were stored in vial till further use. 

6.4. Functionalization of the PLGA composites with Folic acid 

For an effective drug delivery active targeting of the active agent to the tumor site is 

necessary.  As discussed in chapter 1, Folic acid (FA) is a water soluble vitamin that can be used 

for tumor targeting via folate receptor mediated endocytosis.    Folate receptor has been known 

to be greatly over expressed in several human tumors such as ovary, lung, breast, kidney, and 

brain. Folic acid has emerged as an attractive ligand for drug targeting due to its low molecular 

weight (MW-441), which allows for good tissue penetration.  Also FA can be easily attached to 

the PLGA composites through carbodiimide chemistry.  The PLGA composites can be 

functionalized with FA prior to the composite formation or can be conjugate to the pre formed 

PLGA composites.  The FA conjugation prior to the composite formation is preferred as it is 

found to be robust as compared to the functionalization of the pre formed composite. 

The functionalization of PLGA by FA was carried out in three steps.  The first step was 

modification of the PLGA surface by controlled aminolysis to produce primary and secondary 

amine groups on the surface.  The second step was activation of the FA by EDC and NHS.  And 

the final step was the conjugation of the activated FA with aminolyzed PLGA. 
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6.4.1. Controlled aminolysis of PLGA 

 

Figure 6-5: Controlled aminolysis of the PLGA polymer with ethylenediamine 
 

Aminolysis is a technique that is used for surface modification of polyesters.
195-197

 The 

reaction proceeds via nucleophilic attack on the carbonyl carbon to form a positively charged 

tetrahedral intermediate.  Under basic conditions, the tetrahedral intermediate is deprotonated 

and the reaction proceeds to the formation of an amide and an alcohol as shown in Figure 6-5.   

200.00 mg of premade PLGA were immersed in aqueous solution of 5 mL of 0.05 M 

ethylenediamine (ED) for 15 minutes.  The aminolyzed PLGA was then washed three times with 
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ice cold water to remove any excess of ethylenediamine.  IR spectroscopy was performed on the 

aminolyzed PLGA to confirm the presence of the amino groups. 

6.4.2. Activation of Folic acid (FA) 

The chemical conjugation of aminolyzed PLGA with folic acid (FA) was carried out 

utilizing the carbodiimide chemistry.  Carbodiimide is a functional group containing the general 

formula RN=C=NR.  In synthetic chemistry carbodiimides are used to form amide linkage 

between carboxylic acids and amines.  Dicyclohexylcarbodiimide (DCC) is a zero length 

crosslinking agent used to couple carboxyl groups to primary amines.  DCC reacts with a 

carboxyl group forming an amine-reactive O-acylisourea intermediate.  This intermediate may 

react with an amine, yielding an amide.  However, the failure to react quickly with an amine 

results in hydrolysis and regeneration of the carboxyl moiety.   The addition of N-

hydroxysuccinimide (NHS) stabilizes the amine-reactive intermediate by converting it to an 

amine-reactive NHS ester, thus increasing the efficiency of DCC-mediated coupling reactions.  

The amine-reactive NHS ester intermediate has sufficient stability to permit two-step 

crosslinking procedures. 

The carboxylic group of folic acid was activated by DCC and NHS as shown in the 

synthetic scheming in Figure 6-6.  Briefly, 1.00 g of FA was dissolved in 20 mL of 

dimethylsulfoxide (DMSO) in a 100 mL one neck round bottom flask under magnetic stirring.  

Then 1.10 g of NHS and 1.10 g of DCC were added to the FA solution (folic acid/NHS/DCC 

molar ratio=1:1.1:1.1).  The reaction mixture was allowed to react at room temperature for 12 

hours in dark.  At the end of 12 hours of reaction, white byproduct N,N'-dicyclohexylurea 

precipitates are found.  The reaction mixture is filtered through glass wool plug and precipitated 

with ethyl ether.  The precipitated FA-NHS ester was pelleted by centrifugation and the 
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supernatant was removed.  The precipitated FA-NHS ester was vacuum-dried and stored in an 

amber vial till further use. 

 

Figure 6-6: Activation of the carboxyl group of FA with DCC and NHS to form the FA-

NHS ester 

6.4.3. Conjugation of FA-NHS ester with aminolyzed PLGA 

200.00 mg of aminolyzed PLGA was dissolved in 10 mL DCM in a 25 mL round bottom 

flask under magnetic stirring.  Then 200.00 mg of FA-NHS ester was added to it and was let to 

react for 4 hours.  After the end of 4 hours the FA functionalized PLGA (FA-PLGA) was 

precipitated with ethyl ether.  The precipitated FA-PLGA was pelleted by centrifugation and the 
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supernatant removed. The pellet was re-dissolved in DCM (<1 mL), precipitated, and centrifuged 

once more to remove any unreacted FA-NHS ester.  

This FA -PLGA polymer was used to synthesis the composites utilizing the ferrofluid and 

Rhodamine B dye by modified oil-in-water emulsion solvent evaporation technique as discussed 

in section 6.3. 

6.5. Results and Discussion 

The ferrofluid and PLGA composites were characterized by x-ray diffraction, electron 

microscopy, vibrating sample magnetometry, and fluorescence spectroscopy to determine the 

phase, size and morphology, saturation magnetization and the loading percentages of the dye and 

nanoparticles.   The chloroform based ferrofluid was evaporated in a watch glass to obtain dried 

nanoparticles powder.  These dried nanoparticles were used for the powder XRD and VSM 

measurements. 

Powder x-ray diffraction (XRD) measurements were performed using a Panalytical 

X’pert pro diffractometer at a scanning step of 0.05º with a 2θ range from 20º to 80º using a 

graphite monochromated Cu-Kα radiation source. Sample was ground and pressed onto a no 

background, low volume silicon holder.  Figure 6-7 shows the powder XRD pattern of the as 

synthesized ferrofluid nanoparticles with an overlay of the data obtained from the JSPDS 

reference powder diffraction pattern of magnetite.
198

  The pattern shows a pure phase magnetite 

(Fe3O4).  Major diffraction peaks for magnetite at 30.125°, 35.483°, 37.117°, 43.124°, 53.501°, 

57.033°, 62.949°, 71.430°, 74.493°, 75.504°, and 79.504° correspond to the (220), (311), (222), 

(400), (422), (511), (440), (620), (533), (622), and (444) miller indices, respectively.  The peaks 

were indexed by the JCPDS database for magnetite (fd3m, card#01-086-1343). 
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Figure 6-7: Powder x-ray diffraction pattern of as synthesized ferrofluid 

 

The size and morphology of the synthesized ferrofluid was confirmed by transmission 

electron microscopy (TEM).  Figure 6-8 shows relatively uniformed size spherical nanoparticles 

with average diameter of 10±5 nm.  The spherical nanoparticles seem to be agglomerated and not 

mono-dispersed in the TEM image.  The agglomeration can rise from the TEM sample 

preparation.  For the TEM grid preparation the dried magnetite nanoparticles were dispersed in 

methanol and then around 5 μL of the dispersed solution was placed on the copper grid.  We 

believe that the agglomeration of the particles is induced by drying of the ferrofluid 
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Figure 6-8: TEM image of the magnetite nanoparticles in the ferrofluid. 
 

The FA functionalization of the PLGA composites was confirmed by both FTIR and UV-

Vis. spectroscopy.  The appearance of the amide linkage in the FTIR confirms the covalent 

attachment of the FA to PLGA.  The presence of the characteristic bands of FA in the FA 

conjugated PLGA also confirms the covalent attachment of FA. 

Figure 6-9 shows the IR spectra of PLGA, aminolyzed PLGA, FA functionalized PLGA 

and FA by itself.  From the spectrum of PLGA, it can be observed that there is a strong 

characteristic band at 1740 cm
-1

 corresponding to the  stretching vibrations of the carbonyl group 

(C=O), the bands at 2940 and 2990 cm
-1

 are assigned to the C–H stretching vibrations of the –

CH2 groups in the backbone chains of PLGA.  Similarly, the bands at 1160 and 1070 cm
-1

 are 
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attributed to C–O stretching of the ester group.  When aminolyzed PLGA was analyzed by IR, 

similar peaks to those of PLGA were observed with additional bands appearing at 1640 and 1570 

cm
-1

 due to N-H bending vibrations of amine group (NH2).  The presence of this band confirms 

the presence of amine groups on the PLGA.   The folic acid functionalized PLGA (FA_PLGA) 

shows characteristic bands of PLGA as well as folic acid. The band at 3550 and 3300 cm
-1 

corresponding to O-H and N-H stretching vibrations of amide group, 1610 cm
-1

 corresponds to 

the C=O stretching vibrations of amide group  and 1380 cm
-1

 corresponding to C-N stretch for 

amide group.  The appearance of the characteristic bands of amide group confirms the covalent 

attachment of folic acid with PLGA  While the IR spectrum of folic acid is characterized by 

bands between 3600 and 3000 cm
-1

 are due to the OH stretching and N-H stretching vibration 

bands, band at 1670 cm
-1

 for C=O stretching vibrations from carboxyl group (COOH) and 1600 

cm 
-1

 for N-H bending vibrations of amine group (NH2).
177
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Figure 6-9: IR spectra of PLGA, aminolyzed PLGA (PLGA-NH2), FA functionalized 

PLGA and FA 
 

Further the FA functionalization of PLGA was confirmed by UV-vis spectroscopy.  

Figure 6-10  shows the absorbance spectra of the FA functionalized PLGA polymer (FA-PLGA) 

and folic acid by itself.  The FA absorbs UV light and has absorption peaks at 210, 280 and 360 

nm.
199,200

  The absorbance spectra of the FA functionalized PLGA also shows absorbance 

maxima at 280 and 360 nm confirming the covalent attachment of the folate.  The FA and FA-

PLGA samples for absorbance measurements were prepared by dispersing about 1 mg each in 

water.  The absorbance of the aqueous suspension was measured in a quartz cuvette.   
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Figure 6-10: UV-Vis absorbance spectra of the FA functionalized PLGA polymer.  Inset 

shows the absorbance spectra of pure folic acid (FA) 
 

Scanning electron microscopy was performed on Hitachi SU-70 field emission scanning 

electron microscope to evaluate the size distribution and morphology of the magnetic PLGA 

composites and the FA-PLGA composites containing the dye and the ferrofluid.  Both PLGA 

and FA-PLGA composites samples were prepared by lightly sprinkling the composite powder on 

a conductive carbon tape mounted on the sample holder.   The sample was then sputtered with 

gold to make it conductive and reduce charging.  As seen in Figure 6-11 the PLGA composites 

are relatively uniform sized with an average diameter of 300±50 nm while the FA-PLGA 

composites are found to be spherical with a wider size distribution.  The FA-PLGA composite 
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looks as if they are interconnected and we speculate that it occurs due to excessive charging of 

the FA-PLGA composites even after sputtering it with conductive gold.    

 

Figure 6-11: SEM image of the PLGA composites utilizing the ferrofluid and Rhodamine B 

dye. (A) PLGA composites, (B) FA-PLGA composites 

 

The loading efficiency of the prepared PLGA composites was determined by 

fluorescence spectroscopy.  Rhodamine is acetone soluble so 4.00 mg of the PLGA composite 

were dissolved in 10 mL of acetone and filtered to remove the iron oxide nanoparticles. 

Fluorescence measurements were performed on the filtrate to determine the dye content in 4 mg 

of the composites.  Fluorescence intensity of known concentrations of dye was measured and a 

linear curve fit was performed which yields around 1.97% w/w dye loading in the PLGA 

composites containing both dye and ferrofluid. 
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Figure 6-12: Linear regression plot yielding a 1.97 % w/w Rhodamine B dye loading into 

the PLGA composites 
 

Thermogravimetric analysis (TGA) was performed on the PLGA composites containing 

the dye and ferrofluid (magnetic PLGA comp.), as well as the controls- PLGA dye composite, 

PLGA ferrofluid composite and PLGA by itself.  As can be seen in Figure 6-13 TGA plot yields 

around 2 % w/w Rhodamine B dye and 6.67 % w/w magnetite nanoparticle loading.  The 

decomposition event around 240º C attributed to the decomposition of PLGA as seen in figure.   

The decomposition event around 240º C is observed in the magnetic PLGA composites 

decomposition profile.   The Rhodamine B dye yields two decomposition events around 315 º C 

and 430 º C. A trivial decomposition event is observed at 315º C and 430º C attributed to the 

decomposition of Rhodamine B dye in the magnetic PLGA composites decomposition profile.   
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The ferrofluid shows a decomposition event around 200º C due to the decomposition of the 

sodium oleate surfactant on the surface of the particles.  The magnetite nanoparticles thereafter 

are stable and show no degradation till 600º C.  

 

Figure 6-13: TGA plot showing the decomposition profile of the PLGA composites and the 

controls 
 

Magnetic characterization was performed on the chloroform based ferrofluid as well as 

the PLGA composites by room temperature vibrating sample magnetometer (VSM) after drying 

the fluid.  Figure 6-14 shows a hysteresis plot of the as synthesized ferrofluid and PLGA 

composites.  The saturation magnetization of the iron oxide nanoparticles was around 105 emu/g.  

As seen in the inset the corecivity of magnetite nanoparticles is found to be negligible.  The 

saturation magnetization of the bulk magnetite is found to be around 90-120 emu/g.  The 
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decrease in the magnetization of the magnetite nanoparticles is attributed to the surfactant 

coating on the surface of the particles.  The inset shows the hysteresis plot of the PLGA 

composites containing the dye and the ferrofluid yields net magnetization around 8.18 emu/g.  

Utilizing the TGA data for weight correction the net magnetization of PLGA composites was 

found to be 100.00 emu/g.  The hysterysis loop for the PLGA composites is observed to be very 

noisy because the volume of magnetite nanoparticles is very less within the PLGA composites as 

well as the particles is randomly spread within the composites. 

 

Figure 6-14: Room temperature VSM data of the as-prepared ferrofluid material plotted as 

magnetization (emu/g) versus applied field (Oe) 
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Fluorescence spectroscopy was employed to study the release kinetics of the Rhodamine 

B dye from the PLGA composite while placing the sample in a radio frequency (Rf) induction 

heating coil.  Fluorescence measurements were performed on an open bench top HORIBA Jobin 

Yvon spectrometer equipped with a 535 nm laser source and synapse CCD detector shown in the 

Figure 6-15.   

 

Figure 6-15: Block diagram of the open bench top fluorescence spectrometer equipped with 

laser and the Rf heating coil set 
 

6.5.1.Rf induction heating 

Rf induction heating was carried out using Ambrell Inc. Model Easyheat 0224 induction 

heating system.  In a basic induction heating setup shown in Figure 6-16, a solid state Rf power 

supply sends an AC current through an inductor coil (often a copper coil).  The passage of 

current through this coil generates a very intense and rapidly changing magnetic field in the 
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space within the inductor coil and the sample to be heated is placed inside the coil.  The intense 

alternating magnetic field inside the inductor coil repeatedly magnetizes and de-magnetizes the 

iron oxide nanoparticles. This rapid flipping of the magnetic domains causes considerable 

friction and heating inside the material. The magnetic hyperthermia induced by Rf radiations is 

termed as Rf hyperthermia.   

 

Figure 6-16: Block diagram of the basic induction heating coil system 
 

The Rf hyperthermia technique offers benefits over existing hyperthermia treatments 

such as the technique can be localized using suitable Rf coils.
201,202

  Also Rf can be used for 

heating deep-seated tumors compared to microwave hyperthermia that has a poor depth of 

penetration, which makes it unsuitable for treatment of deep-seated tumors.  The microwave 

radiations also heats up the surrounding water molecules by dielectric heating producing 

excessive heat.
186

  Another major benefit of Rf hyperthermia is that it can be integrated into 

magnetic resonance imaging (MRI) systems for simultaneous treatment and monitoring.
202

 

  



www.manaraa.com

134 
 

 

Figure 6-17: Plot of fluorescence intensity with the time of Rf induction heating of the 

PLGA composites. An increase in the fluorescence intensity is observed with time. 
 

The PLGA composites were dispersed in water and sonicated for about 15 minutes to 

remove the aggregated particles and then magnetically extracted and re-dispersed in water.  In-

situ fluorescence measurements were carried out on the dispersed PLGA composites at every 30 

seconds time interval for 30 minutes while the sample was placed in the Rf induction coil.  

Figure 6-17 shows that the fluorescence intensity of the PLGA composites increases linearly 

with time of Rf induction heating.   
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Figure 6-18: Plot of fluorescence intensity with the time of pulsed Rf induction heating of 

the PLGA composites. An increase in the fluorescence intensity is observed when the Rf 

pulse is switched ON and the intensity decreased when the Rf pulse is switched OFF 
 

A pulsed Rf treatment of the PLGA composites was also carried out which showed a 

corresponding increase in the rate of the dye release when the PLGA composites were heated (Rf 

pulse ON) and the rate of dye release decreases when RF pulse was OFF.  As seen in Figure 6-18 

the fluorescent intensity increases slightly in the first 10 minutes when the RF pulse is OFF, due 

to the burst release of the dye at the surface of the composites.  For the next 10 minutes i.e. 

between 10 to 20 minutes when the Rf pulse is ON an increase in fluorescent intensity is 

observed.  An insignificant increase in intensity is observed from 20 to 30 minutes when the Rf 
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pulse OFF and that is due to the remnant heat left when the Rf pulse was ON.  With the next Rf 

pulse ON between 30 to 40 minutes, a significant increase in the intensity is observed and again 

the intensity decreases when the Rf pulse is switched OFF between 40-50 minutes. 

 

Figure 6-19: Plot of DLS results showing the increase in size with the increase in 

temperature 
 

We speculate that when the magnetite nanoparticles are inductively heated that heat up 

the surrounding polymeric composite leading it to swell.  The swollen polymeric composites in 

turn lead to the release of Rhodamine B dye.   The swelling up of the PLGA composites due to 

the heat is confirmed by dynamic light scattering measurements.  Figure 6-19 shows the plot of 

temperature vs. the average particle size of the PLGA composites containing the dye and 



www.manaraa.com

137 
 

ferrofluid as well as the PLGA composites by itself.  An increase in the size of the composites is 

observed with increase in the temperature.  Similar results were obtained for PLGA controls. 

6.6. MRI contrast application 

This ferrofluid was also investigated in vitro by magnetic resonance relaxivity 

measurements for its application in magnetic resonance imaging.  The magnetic resonance 

imaging (MRI)/spectroscopic experiments were performed on a 2.4 T/40 cm bore MR system 

(Biospec/Bruker).  For magnetic resonance relaxivity measurements the PLGA composites were 

dispersed in low melting agarose gels to avoid settling of the composites. 

6.6.1. MRI sample preparation 

The 1% agarose (w/v) gels were prepared by dissolving agarose powder in deionized 

water. The solution was heated in a microwave oven while stirring occasionally to ensure 

complete dissolution of agarose.  The MRI relaxation times were measured for gels containing 

PLGA composites with concentrations of 0.6700, 0.3350, 0.1675, 0.0838, and 0.0419 mM.   A 

control sample without PLGA composites was measured.   

The MRI/spectroscopic experiments were performed by a collaborator and the 

experimental details followed were as follows.  Spectroscopic T1 and T2 
1
H relaxation 

measurements of the PLGA composites dispersed in agarose gel were conducted using an 

inversion recovery sequence with eight inversion times (TI) and repetition times (TR) at least 

five times the expected T1 value.  For the T2 measurements, a multi-spin-echo CPMG sequence 

was employed with several echo times (TE) and TR values at least five times the expected T1. 

The relaxation times were computed from least-squares fitting of the exponentially varying 

signals using analysis routines available at the MR system. Relaxivities were extracted from 
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graphs of relaxation rates (1/T1 and 1/T2) versus concentration.  The concentration range used for 

the relaxivity measurements was in the range 0.0419-0.6700 mM.   

6.6.2.MRI results  

 

Figure 6-20: Relaxivity plot for first MRI measurements 
 

In Figure 6-20, the relaxation rates R1=1/T1 and R2=1/T2 are shown as a function of 

concentration of the PLGA composites. The relaxivities R1 and R2, representing the slopes of 

these curves, are 0.1 s
-1

mM
-1

 and 58.7 s
-1

mM
-1

 respectively.  Iron oxide nanoparticles are known 

to be T2 enhancement agent as they have high magnetic susceptibilities and generate high 

magnetic field gradients near their surfaces. These gradients create local magnetic field 

inhomogeneities that cause rapid dephasing of nearby proton spins, thus increasing proton 
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transverse relaxivities (R2) which is evident from the relaxivity plot.  A negligible reduction in 

the transverse relaxivity (R2) is observed due to the polymeric coating on the nanoparticles. 

   

 

Figure 6-21: MRI T2-weighted image of the PLGA composites sample in agarose with 

varying concentration of the magnetite (iron oxide) nanoparticles. 

  

As discussed earlier the iron oxide (magnetite) nanoparticles are effective in reducing the 

T2 relaxation time, thereby inducing a signal darkening on the T2-weighted MRI images.  As 

seen in Figure 6-21 as the concentration of the iron oxide nanoparticles increases the image 

contrast the respective micro-centrifuge tubes increases.  This phenomenon is caused by the 

significant enhancement of transverse proton relaxation in the vicinity of areas containing 

magnetic iron oxide, thus leading to quick fading of MR signals.   

6.7. Conclusion 

In conclusion, the chloroform based ferrofluid containing monodisperse magnetite 

nanoparticles were produced using thermolysis technique.  The magnetite nanoparticles of the 

ferrofluid were mono-dispersed with an average diameter of 10± 5 nm and were highly magnetic 

with a saturation magnetization of 105 emu/g. The ferrofluid was found to be stable over six 

months.  The PLGA composites were synthesized using the ferrofluid and Rhodamine B dye by 

modified oil-in-water emulsion evaporation technique.   The PLGA composites were further 



www.manaraa.com

140 
 

functionalized with folic acid to achieve targeted delivery.   The release of the dye from the 

PLGA composite when place in a Rf induction coil was determined by fluorescence 

spectroscopy and an increase in the fluorescent intensity was observed with increase in the Rf 

induction heating time.   A pulsed Rf treatment of the PLGA composites was also carried out 

which shows a corresponding increase in the rate of dye release when the composites are heated 

(RF pulse ON) and rate decrease (RF pulse OFF). The dye is released from the PLGA 

composites due to the swelling of the polymer and this is confirmed by dynamic light scattering 

measurements.  Magnetic resonance imaging was also performed using the PLGA composites 

which showed enhancement in the T2-weighted image contrast and thus negligible reduction in 

the contrast capabilities of the iron oxide particles (R2 = 58.7 s
-1

mM
-1

).  The PLGA composites 

containing the dye and the iron oxide nanoparticles thus show a potential for being a dual modal 

imaging and therapeutic delivery system with reduced drug related toxicity and better drug 

activity. 
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Chapter 7. Conclusions 
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The goal of this dissertation was to design a dual modal controlled release drug delivery 

system with cellular targeting capabilities.  As discussed in this dissertation the design of the 

drug delivery carrier consisted of magnetic nanoparticles as a core with a biocompatible polymer 

coating.  The incorporating of magnetic iron/iron oxide nanoparticles into the polymeric 

composites was to achieve local heating of the composites through magnetic hyperthermia 

principles. These polymeric composites are expected to be superior to conventional routes of 

drug administration because the use of nanocomposites would improve the lifetime of the drug in 

the circulation, increase the accumulation of the drug at the tumor site through specific site 

reorganization mechanism, increase the time that the tumor would be exposed to the drug, and 

minimize the amount of drug able to enter healthy tissue as a result of the entrapment of the drug 

within a polymeric matrix.  A summary of some of the main conclusions in this dissertation work 

is presented as below: 

1. The first step in the design of the drug delivery was to achieve a complete polymeric 

coating on the magnetic iron oxide nanoparticles.  Magnetic iron oxide nanoparticles 

were synthesized by one-pot polyol technique.  This process enabled the liquid polyol to 

act not only as a solvent, but also as a mild reducing agent and a surfactant for the 

stabilization of the nanoparticles.  The iron oxide nanoparticles synthesized were then 

coated with a copolymer of styrene- poly (styrene-co-vinylbenzylchloride-co-

divinylbenzene) (PSVBDVB) which has better mechanical properties compared to 

polystyrene. Also, monomer vinylbenzylchloride used has chlorine on its para position 

that doesn’t interfere in the polymerization process and provides a site for further 

functionalization of the polymer through nucleophilic substitution reactions.  Complete 

encapsulation of the iron oxide nanoparticles with PSVBDVB copolymer was achieved 
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through precipitation polymerization process and was evident from the SEM images of 

the copolymer composites.  The results indicated that the iron oxide nanoparticles are not 

only incorporated into the copolymer matrix but also act as nucleation sites for the 

polymerization process to begin.  The polymerization process was found to have no effect 

on the magnetization of the nanoparticles. But the nanoparticles had several effects on the 

resultant polymeric composite size and morphology.  As the loading of the nanoparticles 

was increase during the polymerization process, a decrease in the composite diameter 

was observed.  Also an increase in the polydispersity, and decrease in the uniformity of 

the polymeric composition was detected.   These effects of nanoparticle loading reported 

give insight into parameters that may need to be adjusted in order to obtain mono-

dispersed polymeric composition with better mechanical properties. 

2. In the second phase of the design of drug delivery system, the PSVBDVB polymer was 

replaced by a biocompatible and biodegradable polymer- Poly (lactide-co-glycolide) 

(PLGA).  It has been approved by FDA for human applications.  The PLGA composites 

containing the Fe@FeOx core shell nanoparticles and the drug analog [Ru(bpy) dye] was 

prepared by oil-in water emulsion solvent evaporation technique.  The PLGA composites 

prepared were spherical but had a wider size distribution in the range of 500 nm to 2.5 

μm.  The local heating of the PLGA composites was also achieved by irradiating the 

Fe@FeOx nanoparticles with 2.45 GHz microwave radiations.  The Ru(bpy) dye can be 

quenched by iron oxide nanoparticles. A decrease in the fluorescent intensity of the 

PLGA composites was observed when the composites were heated by microwaves or 

external heat source.  This decrease in intensity observed was speculated to be due to the 

quenching of the released dye by the iron nanoparticles.  The release of the Ru(bpy) dye 
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from the PLGA composites after microwave irradiation was successfully achieved.  Also 

higher Ru(bpy) dye release from the composites by locally heating the sample with 2.45 

GHz microwave pulse compared to externally heating the composite sample was 

demonstrated. 

3. The final step is the design of controlled release drug delivery system with dual modal 

imaging and therapeutic capabilities.  For an efficient drug delivery carrier the carrier size 

plays and important role, so the Fe@FeOx nanoparticles previously used were replaced 

by a chloroform based ferrofluid.  The ferrofluid was synthesized by novel thermolysis 

technique using sodium oleate as the surfactant.  The synthesized ferrofluid consisted of 

mono-dispersed 10±5 nm in diameter.  The nanoparticles were highly magnetic with 

saturation magnetization reaching 105 emu/g and 5 Oe corecivity.  The ferrofluid and the 

drug analog-Rhodamine B dye were encapsulated into the PLGA polymer by modified 

oil-in-water emulsion technique and were confirmed by SEM.  For achieving specific 

targeting capabilities the PLGA composites were functionalized with folic acid. The folic 

acid attachment to the PLGA was confirmed by IR and UV-Vis spectroscopy.  The FA-

PLGA composites were synthesized by the same modified oil-in-water emulsion 

technique. The release of the dye from the PLGA composites when placed in the Rf 

induction coil was determined by fluorescence spectroscopy and a linear increase in the 

fluorescent intensity was observed with time.  The increase in the fluorescent intensity is 

observed indicating that the dye is released from the PLGA composites when locally 

heated.  Also, the controlled release of the dye from the composites was achieved by a 

pulsed Rf treatment.   Increase in the intensity is observed when the composites are 

heated with the Rf pulse ON and rate decreases when the Rf pulse is switched OFF.  This 
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result confirms successful design of a controlled release therapeutic delivery system.  The 

dye is released from the PLGA composites due to the swelling of the polymer and this is 

confirmed by dynamic light scattering measurements.  Magnetic resonance imaging was 

also performed using the PLGA composites which showed enhancement in the T2-

weighted image contrast and thus negligible reduction in the contrast capabilities of the 

iron oxide particles (R2 = 58.7 s
-1

mM
-1

).  The PLGA composites containing the 

Rhodamine B dye and the iron oxide nanoparticles thus constitute a controlled release 

drug delivery system with dual modal imaging and therapeutic capabilities. 

 The present research contributed to the understanding of key parameters in the 

preparation of polymeric composites for therapeutic and imaging purposes.  This work 

has added much to the understanding of the drug delivery system, and part of the ongoing 

work includes on achieving a stable water dispersion of the FA functionalized PLGA 

composites.  Also a detailed cytotoxicity and intracellular uptake study of the composites 

needs to be done for further understanding the biological aspects needs to be concentrated 

for achieving an enhanced drug delivery system capable of replacing the conventional 

routes of drug administration. 

7.1. Future work 

7.1.1. Drug delivery application 

The future step in the designing of the PLGA based drug delivery system is the 

incorporation of the anticancer drugs such as doxorubicin, paclitaxel, or platinum based drugs 

which are known to cause general toxicity.  These drugs can be incorporated in the PLGA 

composites in the same manner by oil-in-water emulsification solvent evaporation technique in 
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which the drug analog- fluorescent dyes were incorporated in the present research.
203

  For 

monitoring the release of the anticancer drugs from the PLGA composites, fluorescent tagged 

anticancer drugs can be used.  The fluorescent tagging of the anticancer drugs makes it easy to 

monitor its release through fluorescent spectroscopy that has been very well established in this 

dissertation work.  Also the drug release can also be determined by HPLC, and UV-Vis 

spectroscopy depending on the type of anticancer drug used.  For example if doxorubicin is used 

as the active therapeutic agent, the encapsulation doxorubicin in PLGA composites can be 

determined by UV-Vis spectroscopy.  Doxorubicin shows a absorbance maxima at 480nm that 

can be utilized to determine the drug concentration using a calibration curve method.
204,205

 

It is also important to study the cytotoxicity of the prepared drug carrier.  Cytotoxicity 

experiments need to be conducted on the prepared PLGA composites.  The initial step would be 

to determine in-vitro cytotoxicity of the PLGA controls- the PLGA composites by itself and the 

PLGA composites containing the magnetic iron/iron oxide nanoparticles and finally the drug 

loaded magnetic PLGA composites.  The next step has to be the in-vitro study of the heating 

effects of the composites on cell lines.  It is necessary to confirm that the heat generated by the 

magnetic nanoparticles is within the defined hyperthermia range (42-46º C).  The increase in the 

temperature of the sample when placed in the Rf induction coil can be measured by utilizing a 

fiber optic based thermometer.  And the final step is to study the specific binding of the PLGA 

composites to the folate receptor on the cancerous cells.   

7.1.2.  Magnetic cell separation 

Magnetic cell separation is a technique of cell sorting by incubating with magnetic 

nanoparticles coated with appropriate targeting ligands such as antibodies or proteins.
156,206

  

These surface coated magnetic nanoparticles bind to the call surface and can be magnetically 
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separated from the mixture and purified.   The magnetic cell separation technique does not 

require a separating column.
207

  It can be carried out in the sample tubes in liquid phase.  The 

iron oxide nanoparticles loaded poly (styrene-co- vinylbenzylchloride-co-divinylbenzene) 

(PSVBDVB) composites prepared can be further functionalized with an appropriate targeting 

ligand and can be used for magnetic cell separation. The PSVBDVB composites can be 

functionalized with reactive dyes, e. g., Cibachrom Blue F3GA, or Procion Red for purification 

of purification of lysozyme, albumin, and lactate dehydrogenase.
207,208

  The PSVBDVB 

composites can also be functionalized with streptavidin for isolation of biotinylated 

proteins.
209,210
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